结合电价的预测分布。在日前投标中,最小化CRPS是否会导致最优决策?

IF 0.7 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Weronika Nitka, Rafał Weron
{"title":"结合电价的预测分布。在日前投标中,最小化CRPS是否会导致最优决策?","authors":"Weronika Nitka, Rafał Weron","doi":"10.37190/ord230307","DOIUrl":null,"url":null,"abstract":"Probabilistic price forecasting has recently gained attention in power trading because decisions based on such predictions can yield significantly higher profits than those made with point forecasts alone. At the same time, methods are being developed to combine predictive distributions, since no model is perfect and averaging generally improves forecasting performance. In this article, we address the question of whether using CRPS learning, a novel weighting technique minimizing the continuous ranked probability score (CRPS), leads to optimal decisions in day-ahead bidding. To this end, we conduct an empirical study using hourly day-ahead electricity prices from the German EPEX market. We find that increasing the diversity of an ensemble can have a positive impact on accuracy. At the same time, the higher computational cost of using CRPS learning compared to an equal-weighted aggregation of distributions is not offset by higher profits, despite significantly more accurate predictions.","PeriodicalId":43244,"journal":{"name":"Operations Research and Decisions","volume":"120 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining predictive distributions of electricity prices. Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?\",\"authors\":\"Weronika Nitka, Rafał Weron\",\"doi\":\"10.37190/ord230307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic price forecasting has recently gained attention in power trading because decisions based on such predictions can yield significantly higher profits than those made with point forecasts alone. At the same time, methods are being developed to combine predictive distributions, since no model is perfect and averaging generally improves forecasting performance. In this article, we address the question of whether using CRPS learning, a novel weighting technique minimizing the continuous ranked probability score (CRPS), leads to optimal decisions in day-ahead bidding. To this end, we conduct an empirical study using hourly day-ahead electricity prices from the German EPEX market. We find that increasing the diversity of an ensemble can have a positive impact on accuracy. At the same time, the higher computational cost of using CRPS learning compared to an equal-weighted aggregation of distributions is not offset by higher profits, despite significantly more accurate predictions.\",\"PeriodicalId\":43244,\"journal\":{\"name\":\"Operations Research and Decisions\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research and Decisions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37190/ord230307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research and Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/ord230307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

概率价格预测最近在电力交易中引起了人们的关注,因为基于这种预测的决策比仅凭点预测做出的决策产生的利润要高得多。同时,结合预测分布的方法正在开发,因为没有一个模型是完美的,平均通常可以提高预测性能。在本文中,我们讨论了使用CRPS学习(一种新颖的加权技术,最小化连续排名概率得分(CRPS))是否能在日前投标中产生最优决策的问题。为此,我们使用德国EPEX市场的每小时日前电价进行了实证研究。我们发现增加集合的多样性可以对精度产生积极的影响。与此同时,使用CRPS学习的较高计算成本与分布的等加权聚合相比,并没有被更高的利润所抵消,尽管预测明显更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining predictive distributions of electricity prices. Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?
Probabilistic price forecasting has recently gained attention in power trading because decisions based on such predictions can yield significantly higher profits than those made with point forecasts alone. At the same time, methods are being developed to combine predictive distributions, since no model is perfect and averaging generally improves forecasting performance. In this article, we address the question of whether using CRPS learning, a novel weighting technique minimizing the continuous ranked probability score (CRPS), leads to optimal decisions in day-ahead bidding. To this end, we conduct an empirical study using hourly day-ahead electricity prices from the German EPEX market. We find that increasing the diversity of an ensemble can have a positive impact on accuracy. At the same time, the higher computational cost of using CRPS learning compared to an equal-weighted aggregation of distributions is not offset by higher profits, despite significantly more accurate predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research and Decisions
Operations Research and Decisions OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
1.00
自引率
25.00%
发文量
16
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信