Mohammad KARİMNEJAD ESFAHANİ, Stefano DE MARCHI, Francesco MARCHETTİ
{"title":"使用可变缩放的不连续权函数的移动最小二乘逼近","authors":"Mohammad KARİMNEJAD ESFAHANİ, Stefano DE MARCHI, Francesco MARCHETTİ","doi":"10.33205/cma.1247239","DOIUrl":null,"url":null,"abstract":"Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":"2 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving least squares approximation using variably scaled discontinuous weight function\",\"authors\":\"Mohammad KARİMNEJAD ESFAHANİ, Stefano DE MARCHI, Francesco MARCHETTİ\",\"doi\":\"10.33205/cma.1247239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/cma.1247239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/cma.1247239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Moving least squares approximation using variably scaled discontinuous weight function
Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.