Elmir Rufkatovich Bigushev, Oleg Nikolaevich German
{"title":"格的丢番图指数和部分商的高维类似物的增长","authors":"Elmir Rufkatovich Bigushev, Oleg Nikolaevich German","doi":"10.4213/sm9746e","DOIUrl":null,"url":null,"abstract":"A three-dimensional analogue of the connection between the exponent of the irrationality of a real number and the growth of the partial quotients of its expansion in a simple continued fraction is investigated. As a multidimensional generalization of continued fractions, Klein polyhedra are considered. Bibliography: 12 titles.","PeriodicalId":49573,"journal":{"name":"Sbornik Mathematics","volume":"9 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients\",\"authors\":\"Elmir Rufkatovich Bigushev, Oleg Nikolaevich German\",\"doi\":\"10.4213/sm9746e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three-dimensional analogue of the connection between the exponent of the irrationality of a real number and the growth of the partial quotients of its expansion in a simple continued fraction is investigated. As a multidimensional generalization of continued fractions, Klein polyhedra are considered. Bibliography: 12 titles.\",\"PeriodicalId\":49573,\"journal\":{\"name\":\"Sbornik Mathematics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sbornik Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9746e\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sbornik Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/sm9746e","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Diophantine exponents of lattices and the growth of higher-dimensional analogues of partial quotients
A three-dimensional analogue of the connection between the exponent of the irrationality of a real number and the growth of the partial quotients of its expansion in a simple continued fraction is investigated. As a multidimensional generalization of continued fractions, Klein polyhedra are considered. Bibliography: 12 titles.
期刊介绍:
The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The journal has always maintained the highest scientific level in a wide area of mathematics with special attention to current developments in:
Mathematical analysis
Ordinary differential equations
Partial differential equations
Mathematical physics
Geometry
Algebra
Functional analysis