具有锐常数经典值的$L_p$ -空间$0\le p\le\infty$中三角多项式的Riesz导数的bernstein - szeger不等式

Pub Date : 2023-01-01 DOI:10.4213/sm9822e
Anastasiya Olegovna Leont'eva
{"title":"具有锐常数经典值的$L_p$ -空间$0\\le p\\le\\infty$中三角多项式的Riesz导数的bernstein - szeger不等式","authors":"Anastasiya Olegovna Leont'eva","doi":"10.4213/sm9822e","DOIUrl":null,"url":null,"abstract":"The Bernstein-Szegő inequality for the Weyl derivative of real order $\\alpha\\ge 0$ of trigonometric polynomials of degree $n$ is considered. The aim is to find values of the parameters for which the sharp constant in this inequality is equal to $n^\\alpha$ (the classical value) in all $L_p$-spaces, $0\\le p\\le\\infty$. The set of all such $\\alpha$ is described for some important particular cases of the Weyl-Szegő derivative, namely, for the Riesz derivative and for the conjugate Riesz derivative, for all $n\\in\\mathbb N$. Bibliography: 22 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in $L_p$-spaces, $0\\\\le p\\\\le\\\\infty$, with classical value of the sharp constant\",\"authors\":\"Anastasiya Olegovna Leont'eva\",\"doi\":\"10.4213/sm9822e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bernstein-Szegő inequality for the Weyl derivative of real order $\\\\alpha\\\\ge 0$ of trigonometric polynomials of degree $n$ is considered. The aim is to find values of the parameters for which the sharp constant in this inequality is equal to $n^\\\\alpha$ (the classical value) in all $L_p$-spaces, $0\\\\le p\\\\le\\\\infty$. The set of all such $\\\\alpha$ is described for some important particular cases of the Weyl-Szegő derivative, namely, for the Riesz derivative and for the conjugate Riesz derivative, for all $n\\\\in\\\\mathbb N$. Bibliography: 22 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4213/sm9822e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/sm9822e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了次为$n$的三角多项式的实阶$\alpha\ge 0$ Weyl导数的bernstein - szeger不等式。目的是在所有$L_p$ -空格$0\le p\le\infty$中找到该不等式中的锐常数等于$n^\alpha$(经典值)的参数值。所有这些$\alpha$的集合描述了weyl - szeger导数的一些重要的特殊情况,即Riesz导数和共轭Riesz导数,对于所有$n\in\mathbb N$。参考书目:22篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bernstein-Szegő inequality for the Riesz derivative of trigonometric polynomials in $L_p$-spaces, $0\le p\le\infty$, with classical value of the sharp constant
The Bernstein-Szegő inequality for the Weyl derivative of real order $\alpha\ge 0$ of trigonometric polynomials of degree $n$ is considered. The aim is to find values of the parameters for which the sharp constant in this inequality is equal to $n^\alpha$ (the classical value) in all $L_p$-spaces, $0\le p\le\infty$. The set of all such $\alpha$ is described for some important particular cases of the Weyl-Szegő derivative, namely, for the Riesz derivative and for the conjugate Riesz derivative, for all $n\in\mathbb N$. Bibliography: 22 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信