{"title":"太阳风对火星感应磁场的影响:MAVEN观测","authors":"","doi":"10.23977/geors.2023.060102","DOIUrl":null,"url":null,"abstract":"Since ancient times, human beings have never stopped exploring outer space. As one of the eight planets, Mars has naturally become one of our key research objects. This paper mainly studies the characteristics and influencing factors of the Martian space environment. By using MAVEN's observation data for many years, we found that the intensity of the induced magnetic field is enhanced under the condition of high solar wind pressure, and this phenomenon is explained by the analysis method based on MHD equation.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"27 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar Wind Influences on the Induced Magnetic Field of Mars: MAVEN Observations\",\"authors\":\"\",\"doi\":\"10.23977/geors.2023.060102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since ancient times, human beings have never stopped exploring outer space. As one of the eight planets, Mars has naturally become one of our key research objects. This paper mainly studies the characteristics and influencing factors of the Martian space environment. By using MAVEN's observation data for many years, we found that the intensity of the induced magnetic field is enhanced under the condition of high solar wind pressure, and this phenomenon is explained by the analysis method based on MHD equation.\",\"PeriodicalId\":13046,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Letters\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23977/geors.2023.060102\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/geors.2023.060102","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Solar Wind Influences on the Induced Magnetic Field of Mars: MAVEN Observations
Since ancient times, human beings have never stopped exploring outer space. As one of the eight planets, Mars has naturally become one of our key research objects. This paper mainly studies the characteristics and influencing factors of the Martian space environment. By using MAVEN's observation data for many years, we found that the intensity of the induced magnetic field is enhanced under the condition of high solar wind pressure, and this phenomenon is explained by the analysis method based on MHD equation.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.