环境科学背景下的生态能源

IF 1.6 Q4 ENVIRONMENTAL SCIENCES
Yessica Linares González, Ricardo Peña Moreno, Vladimir Serkin, Laura Morales Lara
{"title":"环境科学背景下的生态能源","authors":"Yessica Linares González, Ricardo Peña Moreno, Vladimir Serkin, Laura Morales Lara","doi":"10.3934/environsci.2023029","DOIUrl":null,"url":null,"abstract":"<abstract> <p>Nowadays, it is possible to assert that the causality of environmental problems entails a complex social, economic, cultural and political background; faced with such a situation, it is essential to have an operational science that considers the human factor that is in constant interaction with the environment (socio-ecological systems), while seeking sustainable development. Because of that, it became necessary to join different disciplines in a construct called Environmental Sciences, whose main objective is to study and solve problems related to human-environment interactions.</p> <p>Endorsing the concept of exergy to an interdisciplinary science implies understanding how society satisfies its needs with the natural resources provided by the various ecosystems and how they sustain demand in the man-environment interaction cycle, starting from the development of structural and functional attributes in a dynamic flow of matter and energy. This can be addressed with the first and second laws of thermodynamics by allowing the use of holistic indicators in the Environmental Sciences; one such indicator is ecoexergy, which describes the state of an ecosystem based on the biomass content and genetic information. Thus, this work presents an outline of the incursion of exergy in the context of environmental sciences, which implies that the ecosystem is an open system whose behavior adheres to the laws of thermodynamics.</p> </abstract>","PeriodicalId":45143,"journal":{"name":"AIMS Environmental Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ecoexergy in the context of environmental sciences\",\"authors\":\"Yessica Linares González, Ricardo Peña Moreno, Vladimir Serkin, Laura Morales Lara\",\"doi\":\"10.3934/environsci.2023029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>Nowadays, it is possible to assert that the causality of environmental problems entails a complex social, economic, cultural and political background; faced with such a situation, it is essential to have an operational science that considers the human factor that is in constant interaction with the environment (socio-ecological systems), while seeking sustainable development. Because of that, it became necessary to join different disciplines in a construct called Environmental Sciences, whose main objective is to study and solve problems related to human-environment interactions.</p> <p>Endorsing the concept of exergy to an interdisciplinary science implies understanding how society satisfies its needs with the natural resources provided by the various ecosystems and how they sustain demand in the man-environment interaction cycle, starting from the development of structural and functional attributes in a dynamic flow of matter and energy. This can be addressed with the first and second laws of thermodynamics by allowing the use of holistic indicators in the Environmental Sciences; one such indicator is ecoexergy, which describes the state of an ecosystem based on the biomass content and genetic information. Thus, this work presents an outline of the incursion of exergy in the context of environmental sciences, which implies that the ecosystem is an open system whose behavior adheres to the laws of thermodynamics.</p> </abstract>\",\"PeriodicalId\":45143,\"journal\":{\"name\":\"AIMS Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/environsci.2023029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/environsci.2023029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

& lt; abstract>如今,可以断言,环境问题的因果关系涉及复杂的社会、经济、文化和政治背景;面对这种情况,在寻求可持续发展的同时,必须有一门考虑与环境(社会生态系统)不断相互作用的人的因素的业务科学。正因为如此,有必要将不同的学科联合起来,形成一个叫做环境科学的体系,其主要目标是研究和解决与人与环境相互作用有关的问题。从物质和能量动态流动的结构和功能属性的发展出发,将能源概念纳入跨学科科学意味着理解社会如何通过各种生态系统提供的自然资源来满足其需求,以及它们如何在人与环境的相互作用循环中维持需求。这可以通过允许在环境科学中使用整体指标来解决热力学第一定律和第二定律;其中一个指标是生态能,它描述了基于生物量和遗传信息的生态系统状态。因此,这项工作概述了环境科学背景下的能量入侵,这意味着生态系统是一个开放的系统,其行为遵循热力学定律。& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ecoexergy in the context of environmental sciences

Nowadays, it is possible to assert that the causality of environmental problems entails a complex social, economic, cultural and political background; faced with such a situation, it is essential to have an operational science that considers the human factor that is in constant interaction with the environment (socio-ecological systems), while seeking sustainable development. Because of that, it became necessary to join different disciplines in a construct called Environmental Sciences, whose main objective is to study and solve problems related to human-environment interactions.

Endorsing the concept of exergy to an interdisciplinary science implies understanding how society satisfies its needs with the natural resources provided by the various ecosystems and how they sustain demand in the man-environment interaction cycle, starting from the development of structural and functional attributes in a dynamic flow of matter and energy. This can be addressed with the first and second laws of thermodynamics by allowing the use of holistic indicators in the Environmental Sciences; one such indicator is ecoexergy, which describes the state of an ecosystem based on the biomass content and genetic information. Thus, this work presents an outline of the incursion of exergy in the context of environmental sciences, which implies that the ecosystem is an open system whose behavior adheres to the laws of thermodynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Environmental Science
AIMS Environmental Science ENVIRONMENTAL SCIENCES-
CiteScore
2.90
自引率
0.00%
发文量
31
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信