S. I. Melnychuk, M. R. Obertiukh, O. G. Murashchenko
{"title":"用于电流转向dac的温度补偿直流电源(Ukr)","authors":"S. I. Melnychuk, M. R. Obertiukh, O. G. Murashchenko","doi":"10.31649/2307-5376-2023-2-19-27","DOIUrl":null,"url":null,"abstract":"Джерела опорної напруги та опорного струму є невід'ємною частиною будь-яких електронних схем. Особливо важливу роль джерела опорної напруги та струму грають в аналогових схемах, від них залежать багато кількісних параметрів роботи схем. Наприклад в аналого-цифрових та цифро-аналогових перетворювачах значення повної шкали визначається опорним джерелом напруги. Сьогодні існує досить багато різноманітних підходів щодо побудови схем джерел постійного струму. Класичним варіантом побудови джерел опорної напруги є використання стабілітрону та ефектів зенеровського (тонельного) і лавинного пробоїв у ньому при зворотній напрузі зміщення. Зенеровский пробій відбувається за напруги менше п'яти вольт і має негативний температурний коефіцієнт, лавинний пробій відбувається при вищих напругах і має позитивний температурний коефіцієнт. За напруги пробою в діапазоні від п'яти до восьми вольт його сумарний позитивний ТКН дорівнює приблизно негативному ТКН діода, зміщеного в прямому напрямку. Джерела опорної напруги, визначаються напругою забороненої зони кремнію (бандгапи), забезпечують хороший ТКН при низьких напругах живлення. У схемі для досягнення термокомпенсації використовуються узгоджені транзистори з різницею в щільності струмів, що протікають через них. Метод формування опорної напруги забороненої зони привабливий для реалізації через порівняльну простоту, і низький рівень шумів. В статті запропоновано новий підхід до побудови термостабільних джерел опорного струму на основі біполярних транзисторів з використанням напруги забороненої зони напівпровідника та струмових дзеркал. В роботі здійснено схемотехнічний аналіз статичних характеристик запропонованих схем термокомпенсованих двополюсних джерел постійного струму кільцевого типу у заданому діапазоні температур та проаналізовані принципи завдяки яким досягається термокомпенсація. Здійснене комп’ютерне моделювання статичних характеристик вказаних генераторів опорного струму, таких як температурний дрейф струму, а також коефіцієнта стабілізації за зміни напруги живлення (навантажувальна здатність).","PeriodicalId":496912,"journal":{"name":"Наукові праці Вінницького національного технічного університету","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-compensated DC power supplies for current-steering DACs (Ukr)\",\"authors\":\"S. I. Melnychuk, M. R. Obertiukh, O. G. Murashchenko\",\"doi\":\"10.31649/2307-5376-2023-2-19-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Джерела опорної напруги та опорного струму є невід'ємною частиною будь-яких електронних схем. Особливо важливу роль джерела опорної напруги та струму грають в аналогових схемах, від них залежать багато кількісних параметрів роботи схем. Наприклад в аналого-цифрових та цифро-аналогових перетворювачах значення повної шкали визначається опорним джерелом напруги. Сьогодні існує досить багато різноманітних підходів щодо побудови схем джерел постійного струму. Класичним варіантом побудови джерел опорної напруги є використання стабілітрону та ефектів зенеровського (тонельного) і лавинного пробоїв у ньому при зворотній напрузі зміщення. Зенеровский пробій відбувається за напруги менше п'яти вольт і має негативний температурний коефіцієнт, лавинний пробій відбувається при вищих напругах і має позитивний температурний коефіцієнт. За напруги пробою в діапазоні від п'яти до восьми вольт його сумарний позитивний ТКН дорівнює приблизно негативному ТКН діода, зміщеного в прямому напрямку. Джерела опорної напруги, визначаються напругою забороненої зони кремнію (бандгапи), забезпечують хороший ТКН при низьких напругах живлення. У схемі для досягнення термокомпенсації використовуються узгоджені транзистори з різницею в щільності струмів, що протікають через них. Метод формування опорної напруги забороненої зони привабливий для реалізації через порівняльну простоту, і низький рівень шумів. В статті запропоновано новий підхід до побудови термостабільних джерел опорного струму на основі біполярних транзисторів з використанням напруги забороненої зони напівпровідника та струмових дзеркал. В роботі здійснено схемотехнічний аналіз статичних характеристик запропонованих схем термокомпенсованих двополюсних джерел постійного струму кільцевого типу у заданому діапазоні температур та проаналізовані принципи завдяки яким досягається термокомпенсація. Здійснене комп’ютерне моделювання статичних характеристик вказаних генераторів опорного струму, таких як температурний дрейф струму, а також коефіцієнта стабілізації за зміни напруги живлення (навантажувальна здатність).\",\"PeriodicalId\":496912,\"journal\":{\"name\":\"Наукові праці Вінницького національного технічного університету\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Наукові праці Вінницького національного технічного університету\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31649/2307-5376-2023-2-19-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Наукові праці Вінницького національного технічного університету","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31649/2307-5376-2023-2-19-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature-compensated DC power supplies for current-steering DACs (Ukr)
Джерела опорної напруги та опорного струму є невід'ємною частиною будь-яких електронних схем. Особливо важливу роль джерела опорної напруги та струму грають в аналогових схемах, від них залежать багато кількісних параметрів роботи схем. Наприклад в аналого-цифрових та цифро-аналогових перетворювачах значення повної шкали визначається опорним джерелом напруги. Сьогодні існує досить багато різноманітних підходів щодо побудови схем джерел постійного струму. Класичним варіантом побудови джерел опорної напруги є використання стабілітрону та ефектів зенеровського (тонельного) і лавинного пробоїв у ньому при зворотній напрузі зміщення. Зенеровский пробій відбувається за напруги менше п'яти вольт і має негативний температурний коефіцієнт, лавинний пробій відбувається при вищих напругах і має позитивний температурний коефіцієнт. За напруги пробою в діапазоні від п'яти до восьми вольт його сумарний позитивний ТКН дорівнює приблизно негативному ТКН діода, зміщеного в прямому напрямку. Джерела опорної напруги, визначаються напругою забороненої зони кремнію (бандгапи), забезпечують хороший ТКН при низьких напругах живлення. У схемі для досягнення термокомпенсації використовуються узгоджені транзистори з різницею в щільності струмів, що протікають через них. Метод формування опорної напруги забороненої зони привабливий для реалізації через порівняльну простоту, і низький рівень шумів. В статті запропоновано новий підхід до побудови термостабільних джерел опорного струму на основі біполярних транзисторів з використанням напруги забороненої зони напівпровідника та струмових дзеркал. В роботі здійснено схемотехнічний аналіз статичних характеристик запропонованих схем термокомпенсованих двополюсних джерел постійного струму кільцевого типу у заданому діапазоні температур та проаналізовані принципи завдяки яким досягається термокомпенсація. Здійснене комп’ютерне моделювання статичних характеристик вказаних генераторів опорного струму, таких як температурний дрейф струму, а також коефіцієнта стабілізації за зміни напруги живлення (навантажувальна здатність).