{"title":"关于复值内传输特征值的轨迹","authors":"Lukas Pieronek, Andreas Kleefeld","doi":"10.3934/ipi.2023041","DOIUrl":null,"url":null,"abstract":"This paper investigates the interior transmission problem for homogeneous media via eigenvalue trajectories parameterized by the magnitude of the refractive index. In the case that the scatterer is the unit disk, we prove that there is a one-to-one correspondence between complex-valued interior transmission eigenvalue trajectories and Dirichlet eigenvalues of the Laplacian which turn out to be exactly the trajectorial limit points as the refractive index tends to infinity. For general simply-connected scatterers in two or three dimensions, a corresponding relation is still open, but further theoretical results and numerical studies indicate a similar connection.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"66 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On trajectories of complex-valued interior transmission eigenvalues\",\"authors\":\"Lukas Pieronek, Andreas Kleefeld\",\"doi\":\"10.3934/ipi.2023041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the interior transmission problem for homogeneous media via eigenvalue trajectories parameterized by the magnitude of the refractive index. In the case that the scatterer is the unit disk, we prove that there is a one-to-one correspondence between complex-valued interior transmission eigenvalue trajectories and Dirichlet eigenvalues of the Laplacian which turn out to be exactly the trajectorial limit points as the refractive index tends to infinity. For general simply-connected scatterers in two or three dimensions, a corresponding relation is still open, but further theoretical results and numerical studies indicate a similar connection.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2023041\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ipi.2023041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On trajectories of complex-valued interior transmission eigenvalues
This paper investigates the interior transmission problem for homogeneous media via eigenvalue trajectories parameterized by the magnitude of the refractive index. In the case that the scatterer is the unit disk, we prove that there is a one-to-one correspondence between complex-valued interior transmission eigenvalue trajectories and Dirichlet eigenvalues of the Laplacian which turn out to be exactly the trajectorial limit points as the refractive index tends to infinity. For general simply-connected scatterers in two or three dimensions, a corresponding relation is still open, but further theoretical results and numerical studies indicate a similar connection.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.