二维Walsh-Fourier级数的Marcinkiewicz型加权极大算子Cesàro均值

Pub Date : 2023-01-01 DOI:10.2298/fil2309981b
István Blahota, Károly Nagy
{"title":"二维Walsh-Fourier级数的Marcinkiewicz型加权极大算子Cesàro均值","authors":"István Blahota, Károly Nagy","doi":"10.2298/fil2309981b","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the behaviour of the weighted maximal operators of Marcinkiewicz type (C,?)-means ??,* p (f) := supn?P |??n(f)|/ n2/p?(2+?) in the Hardy space Hp(G2) (0 < ? < 1 and p < 2/(2 + ?)). It is showed that the maximal operators ??,* p (f) are bounded from the dyadic Hardy space Hp(G2) to the Lebesgue space Lp(G2), and that this is in a sense sharp. It was also proved a strong convergence theorem for the Marcinkiewicz type (C, ?) means of Walsh-Fourier series in Hp(G2).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the weighted maximal operators of Marcinkiewicz type Cesàro means of two-dimensional Walsh-Fourier series\",\"authors\":\"István Blahota, Károly Nagy\",\"doi\":\"10.2298/fil2309981b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the behaviour of the weighted maximal operators of Marcinkiewicz type (C,?)-means ??,* p (f) := supn?P |??n(f)|/ n2/p?(2+?) in the Hardy space Hp(G2) (0 < ? < 1 and p < 2/(2 + ?)). It is showed that the maximal operators ??,* p (f) are bounded from the dyadic Hardy space Hp(G2) to the Lebesgue space Lp(G2), and that this is in a sense sharp. It was also proved a strong convergence theorem for the Marcinkiewicz type (C, ?) means of Walsh-Fourier series in Hp(G2).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/fil2309981b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fil2309981b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究Marcinkiewicz型(C,?)-means ??的加权极大算子的行为。,* p (f):= supn?P | ? ? n (f) | / n2 / P ?(2 +)哈代空间惠普(G2) (0 & lt;? & lt;1和p <2/(2 + ?))证明了极大算子??,* p(f)从并矢Hardy空间Hp(G2)有界到Lebesgue空间Lp(G2),这在某种意义上是尖锐的。并在Hp(G2)中证明了Walsh-Fourier级数的Marcinkiewicz型(C, ?)均值的一个强收敛定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the weighted maximal operators of Marcinkiewicz type Cesàro means of two-dimensional Walsh-Fourier series
In this paper we investigate the behaviour of the weighted maximal operators of Marcinkiewicz type (C,?)-means ??,* p (f) := supn?P |??n(f)|/ n2/p?(2+?) in the Hardy space Hp(G2) (0 < ? < 1 and p < 2/(2 + ?)). It is showed that the maximal operators ??,* p (f) are bounded from the dyadic Hardy space Hp(G2) to the Lebesgue space Lp(G2), and that this is in a sense sharp. It was also proved a strong convergence theorem for the Marcinkiewicz type (C, ?) means of Walsh-Fourier series in Hp(G2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信