变系数线性和非线性时间分数阶偏微分方程解析研究的一种有效方法

IF 0.7 Q4 PHYSICS, MATHEMATICAL
Muhammad Imran Liaqat, Ali Akgül, Eugenii Yurevich Prosviryakov
{"title":"变系数线性和非线性时间分数阶偏微分方程解析研究的一种有效方法","authors":"Muhammad Imran Liaqat, Ali Akgül, Eugenii Yurevich Prosviryakov","doi":"10.14498/vsgtu2009","DOIUrl":null,"url":null,"abstract":"Метод остаточных степенных рядов эффективен для получения приближенных аналитических решений дифференциальных уравнений дробного порядка. Вычисление дробной производной для коэффициентов степенного ряда, аппроксимирующего точное решение дифференциального уравнения, является недостатком этого метода. Другие известные методы приближенного интегрирования, такие как гомотопическое возмущение, разложение Адомиана и методы вариационных итераций, основываются на интегрировании для получения степенного ряда. Известна сложность вычисления дробных производных и интегрирования функций при построении степенного ряда для решения уравнений математической физики дробного порядка, поэтому использование упомянутых выше методов ограничено спецификой решаемой задачи. В настоящей статье получены приближенные и точные аналитические решения уравнений в частных производных переменными коэффициентами при использовании метода рядов остаточных степеней Лапласа в смысле дробной производной Герасимова-Капуто для времени. Этот метод помог преодолеть ограничения упомянутых выше способов интегрирования уравнений дробного порядка. Метод остаточных степенных рядов Лапласа лучше использовать при вычислении коэффициентов членов в решении ряда, применяя принцип прямого предела на бесконечности. Он также более эффективен, чем различные методы решения, если не использовать полиномы Адомиана и He для решения нелинейных задач дробного порядка. В статье исследуются относительные, повторяющиеся и абсолютные ошибки для трех задач математической физики для оценки достоверности предложенного метода. Результаты показывают, что сконструированный метод является альтернативой различным методам для построения решения рядами при решении уравнений в частных производных с дробным временем.","PeriodicalId":43821,"journal":{"name":"Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta-Seriya-Fiziko-Matematicheskiye Nauki","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients\",\"authors\":\"Muhammad Imran Liaqat, Ali Akgül, Eugenii Yurevich Prosviryakov\",\"doi\":\"10.14498/vsgtu2009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Метод остаточных степенных рядов эффективен для получения приближенных аналитических решений дифференциальных уравнений дробного порядка. Вычисление дробной производной для коэффициентов степенного ряда, аппроксимирующего точное решение дифференциального уравнения, является недостатком этого метода. Другие известные методы приближенного интегрирования, такие как гомотопическое возмущение, разложение Адомиана и методы вариационных итераций, основываются на интегрировании для получения степенного ряда. Известна сложность вычисления дробных производных и интегрирования функций при построении степенного ряда для решения уравнений математической физики дробного порядка, поэтому использование упомянутых выше методов ограничено спецификой решаемой задачи. В настоящей статье получены приближенные и точные аналитические решения уравнений в частных производных переменными коэффициентами при использовании метода рядов остаточных степеней Лапласа в смысле дробной производной Герасимова-Капуто для времени. Этот метод помог преодолеть ограничения упомянутых выше способов интегрирования уравнений дробного порядка. Метод остаточных степенных рядов Лапласа лучше использовать при вычислении коэффициентов членов в решении ряда, применяя принцип прямого предела на бесконечности. Он также более эффективен, чем различные методы решения, если не использовать полиномы Адомиана и He для решения нелинейных задач дробного порядка. В статье исследуются относительные, повторяющиеся и абсолютные ошибки для трех задач математической физики для оценки достоверности предложенного метода. Результаты показывают, что сконструированный метод является альтернативой различным методам для построения решения рядами при решении уравнений в частных производных с дробным временем.\",\"PeriodicalId\":43821,\"journal\":{\"name\":\"Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta-Seriya-Fiziko-Matematicheskiye Nauki\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta-Seriya-Fiziko-Matematicheskiye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14498/vsgtu2009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta-Seriya-Fiziko-Matematicheskiye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14498/vsgtu2009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

剩下的幂级数方法对于得到更近的分析解分数次序微分方程是有效的。对于幂级数系数,近似精确解微分方程,计算分数导数是该方法的一个缺点。其他著名的近似积分方法,如同伦扰动、阿多米安分解和变迭代方法,都是基于积分的幂级数。众所周知,在计算分数导数和在构建幂级数来解数学秩序方程时,函数的积分是很困难的,因此,使用上面提到的方法受到可解问题的特殊性的限制。本文通过使用拉普拉斯剩余幂级数(即格拉西莫夫-卡普托分式)的方法,对偏微分方程的近似和精确分析解。这种方法帮助克服了上述分式方程积分方法的限制。拉普拉斯剩余幂级数的方法最好应用于在级数解中计算成员系数的方法,应用于无限上的直线极限原理。如果不使用阿多米安多项式和非线性分式问题,它也比不同的解决方法更有效。这篇文章研究了数学物理的三个目标的相对、重复和绝对错误,以评估所提出的方法的有效性。结果表明,构建的方法是用不同的方法来替代在偏微分方程中排列的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients
Метод остаточных степенных рядов эффективен для получения приближенных аналитических решений дифференциальных уравнений дробного порядка. Вычисление дробной производной для коэффициентов степенного ряда, аппроксимирующего точное решение дифференциального уравнения, является недостатком этого метода. Другие известные методы приближенного интегрирования, такие как гомотопическое возмущение, разложение Адомиана и методы вариационных итераций, основываются на интегрировании для получения степенного ряда. Известна сложность вычисления дробных производных и интегрирования функций при построении степенного ряда для решения уравнений математической физики дробного порядка, поэтому использование упомянутых выше методов ограничено спецификой решаемой задачи. В настоящей статье получены приближенные и точные аналитические решения уравнений в частных производных переменными коэффициентами при использовании метода рядов остаточных степеней Лапласа в смысле дробной производной Герасимова-Капуто для времени. Этот метод помог преодолеть ограничения упомянутых выше способов интегрирования уравнений дробного порядка. Метод остаточных степенных рядов Лапласа лучше использовать при вычислении коэффициентов членов в решении ряда, применяя принцип прямого предела на бесконечности. Он также более эффективен, чем различные методы решения, если не использовать полиномы Адомиана и He для решения нелинейных задач дробного порядка. В статье исследуются относительные, повторяющиеся и абсолютные ошибки для трех задач математической физики для оценки достоверности предложенного метода. Результаты показывают, что сконструированный метод является альтернативой различным методам для построения решения рядами при решении уравнений в частных производных с дробным временем.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
33.30%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信