从经典不变量理论的角度研究三维几何矩不变量

Q3 Mathematics
L. P. Bedratyuk, A. I. Bedratyuk
{"title":"从经典不变量理论的角度研究三维几何矩不变量","authors":"L. P. Bedratyuk, A. I. Bedratyuk","doi":"10.30970/ms.58.2.115-132","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to clear up the problem of the connection between the 3D geometric moments invariants and the invariant theory, considering a problem of describing of the 3D geometric moments invariants as a problem of the classical invariant theory. Using the remarkable fact that the groups $SO(3)$ and $SL(2)$ are locally isomorphic, we reduced the problem of deriving 3D geometric moments invariants to the well-known problem of the classical invariant theory. We give a precise statement of the 3D geometric invariant moments computation, introducing the notions of the algebras of simultaneous 3D geometric moment invariants, and prove that they are isomorphic to the algebras of joint $SL(2)$-invariants of several binary forms. To simplify the calculating of the invariants we proceed from an action of Lie group $SO(3)$ to an action of its Lie algebra $\\mathfrak{sl}_2$. The author hopes that the results will be useful to the researchers in the fields of image analysis and pattern recognition.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D geometric moment invariants from the point of view of the classical invariant theory\",\"authors\":\"L. P. Bedratyuk, A. I. Bedratyuk\",\"doi\":\"10.30970/ms.58.2.115-132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to clear up the problem of the connection between the 3D geometric moments invariants and the invariant theory, considering a problem of describing of the 3D geometric moments invariants as a problem of the classical invariant theory. Using the remarkable fact that the groups $SO(3)$ and $SL(2)$ are locally isomorphic, we reduced the problem of deriving 3D geometric moments invariants to the well-known problem of the classical invariant theory. We give a precise statement of the 3D geometric invariant moments computation, introducing the notions of the algebras of simultaneous 3D geometric moment invariants, and prove that they are isomorphic to the algebras of joint $SL(2)$-invariants of several binary forms. To simplify the calculating of the invariants we proceed from an action of Lie group $SO(3)$ to an action of its Lie algebra $\\\\mathfrak{sl}_2$. The author hopes that the results will be useful to the researchers in the fields of image analysis and pattern recognition.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.58.2.115-132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.2.115-132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文将三维几何不变量的描述问题看作经典不变量理论的问题,旨在澄清三维几何不变量与不变量理论之间的联系问题。利用群$SO(3)$和$SL(2)$是局部同构的显著事实,我们将三维几何矩不变量的推导问题简化为众所周知的经典不变量理论问题。给出了三维几何不变矩计算的精确表述,引入了同时三维几何不变矩代数的概念,并证明了它们与几种二元形式的联合$SL(2)$-不变量代数同构。为了简化不变量的计算,我们从李群的作用$SO(3)$推进到它的李代数$\mathfrak{sl}_2$的作用。作者希望这些结果对图像分析和模式识别领域的研究人员有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D geometric moment invariants from the point of view of the classical invariant theory
The aim of this paper is to clear up the problem of the connection between the 3D geometric moments invariants and the invariant theory, considering a problem of describing of the 3D geometric moments invariants as a problem of the classical invariant theory. Using the remarkable fact that the groups $SO(3)$ and $SL(2)$ are locally isomorphic, we reduced the problem of deriving 3D geometric moments invariants to the well-known problem of the classical invariant theory. We give a precise statement of the 3D geometric invariant moments computation, introducing the notions of the algebras of simultaneous 3D geometric moment invariants, and prove that they are isomorphic to the algebras of joint $SL(2)$-invariants of several binary forms. To simplify the calculating of the invariants we proceed from an action of Lie group $SO(3)$ to an action of its Lie algebra $\mathfrak{sl}_2$. The author hopes that the results will be useful to the researchers in the fields of image analysis and pattern recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信