{"title":"生物网络挖掘","authors":"Zongliang Yue, Da Yan, Guimu Guo, Jake Chen","doi":"10.37256/bsr.1120231921","DOIUrl":null,"url":null,"abstract":"In this survey, we explore the latest methods and trends in constructing and mining biological networks. We delve into cutting-edge techniques such as weighted gene co-expression network analysis (WGCNA), step-level differential response (SLDR), Biomedical Entity Expansion, Ranking and Explorations (BEERE), Weighted In-Network Node Expansion and Ranking (WINNER), and Weighted In-Path Edge Ranking (WIPER) from the Bioinformatics community, as well as breakthroughs in graph mining methods like parallel subgraph mining systems, temporal graph algorithms, and deep learning. To ensure a solid foundation, we provide an introductory-level overview of six well-established network types in systems biology. In addition, we offer a concise and accessible overview of strategies for network construction, including gene co-expression networks (GCNs), gene regulatory networks (GRNs), and literature-mined biomedical networks. We explain biological network mining in interdisciplinary domains, catering to both biomedical researchers and data mining experts. Our goal is to provide a comprehensive guide that doesn't require a significant time investment. We believe that these current trends will help readers become familiar with the topic and the practical applications of these tools in real-world studies.","PeriodicalId":298847,"journal":{"name":"Biostatistics Research","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological Network Mining\",\"authors\":\"Zongliang Yue, Da Yan, Guimu Guo, Jake Chen\",\"doi\":\"10.37256/bsr.1120231921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this survey, we explore the latest methods and trends in constructing and mining biological networks. We delve into cutting-edge techniques such as weighted gene co-expression network analysis (WGCNA), step-level differential response (SLDR), Biomedical Entity Expansion, Ranking and Explorations (BEERE), Weighted In-Network Node Expansion and Ranking (WINNER), and Weighted In-Path Edge Ranking (WIPER) from the Bioinformatics community, as well as breakthroughs in graph mining methods like parallel subgraph mining systems, temporal graph algorithms, and deep learning. To ensure a solid foundation, we provide an introductory-level overview of six well-established network types in systems biology. In addition, we offer a concise and accessible overview of strategies for network construction, including gene co-expression networks (GCNs), gene regulatory networks (GRNs), and literature-mined biomedical networks. We explain biological network mining in interdisciplinary domains, catering to both biomedical researchers and data mining experts. Our goal is to provide a comprehensive guide that doesn't require a significant time investment. We believe that these current trends will help readers become familiar with the topic and the practical applications of these tools in real-world studies.\",\"PeriodicalId\":298847,\"journal\":{\"name\":\"Biostatistics Research\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/bsr.1120231921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/bsr.1120231921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this survey, we explore the latest methods and trends in constructing and mining biological networks. We delve into cutting-edge techniques such as weighted gene co-expression network analysis (WGCNA), step-level differential response (SLDR), Biomedical Entity Expansion, Ranking and Explorations (BEERE), Weighted In-Network Node Expansion and Ranking (WINNER), and Weighted In-Path Edge Ranking (WIPER) from the Bioinformatics community, as well as breakthroughs in graph mining methods like parallel subgraph mining systems, temporal graph algorithms, and deep learning. To ensure a solid foundation, we provide an introductory-level overview of six well-established network types in systems biology. In addition, we offer a concise and accessible overview of strategies for network construction, including gene co-expression networks (GCNs), gene regulatory networks (GRNs), and literature-mined biomedical networks. We explain biological network mining in interdisciplinary domains, catering to both biomedical researchers and data mining experts. Our goal is to provide a comprehensive guide that doesn't require a significant time investment. We believe that these current trends will help readers become familiar with the topic and the practical applications of these tools in real-world studies.