{"title":"Jeribi基本谱的新特征","authors":"Belabbaci Chafika","doi":"10.28924/2291-8639-21-2023-109","DOIUrl":null,"url":null,"abstract":"In this paper, we give several characterizations of the Jeribi essential spectrum of a bounded linear operator defined on a Banach space by using the notion of almost weakly compact operators. As a consequence, we prove the stability of the Jeribi essential spectrum under compact perturbations. Furthermore, some characterizations of the Jeribi essential spectra of 3×3 upper triangular block operator matrix are also given.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"187 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Characterizations of the Jeribi Essential Spectrum\",\"authors\":\"Belabbaci Chafika\",\"doi\":\"10.28924/2291-8639-21-2023-109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give several characterizations of the Jeribi essential spectrum of a bounded linear operator defined on a Banach space by using the notion of almost weakly compact operators. As a consequence, we prove the stability of the Jeribi essential spectrum under compact perturbations. Furthermore, some characterizations of the Jeribi essential spectra of 3×3 upper triangular block operator matrix are also given.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
New Characterizations of the Jeribi Essential Spectrum
In this paper, we give several characterizations of the Jeribi essential spectrum of a bounded linear operator defined on a Banach space by using the notion of almost weakly compact operators. As a consequence, we prove the stability of the Jeribi essential spectrum under compact perturbations. Furthermore, some characterizations of the Jeribi essential spectra of 3×3 upper triangular block operator matrix are also given.