深层边界层中建筑物群尾流特性研究

IF 2.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Abhishek Mishra, Marco Placidi, Matteo Carpentieri, Alan Robins
{"title":"深层边界层中建筑物群尾流特性研究","authors":"Abhishek Mishra, Marco Placidi, Matteo Carpentieri, Alan Robins","doi":"10.1007/s10546-023-00830-0","DOIUrl":null,"url":null,"abstract":"Abstract Wind tunnel experiments were conducted to understand the effect of building array size ( N ), aspect ratio ( AR ), and the spacing between buildings ( $$W_S$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> ) on the mean structure and decay of their wakes. Arrays of size 3 $$\\times $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>×</mml:mo> </mml:math> 3, 4 $$\\times $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>×</mml:mo> </mml:math> 4,and 5 $$\\times $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>×</mml:mo> </mml:math> 5, AR = 4, 6, and 8, and $$W_S$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> = 0.5 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 1 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 2 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> and 4 $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> (where $$W_B$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> is the building width) were considered. Three different wake regimes behind the building clusters were identified: near-, transition-, and far-wake regimes. The results suggest that the spatial extent of these wake regimes is governed by the overall array width ( $$W_A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:math> ). The effects of individual buildings are observed to be dominant in the near-wake regime ( $$0<x/W_A< {0.45}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> </mml:mrow> </mml:math> ) where individual wakes appear behind each building. These wakes are observed to merge in the transition-wake region ( $${0.45}< x/W_A < 1.5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mn>1.5</mml:mn> </mml:mrow> </mml:math> ), forming a combined wake in which the individual contributions are no longer apparent. In the far-wake regime ( $$x/W_A > 1.5$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo>></mml:mo> <mml:mn>1.5</mml:mn> </mml:mrow> </mml:math> ), clusters’ wakes are akin to those developing downwind of a single isolated building. Accordingly, new local and global scaling parameters in the near- and far-wake regimes are introduced. The decay of the centreline velocity deficit is then modelled as a function of the three parameters considered in the experiment.","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":"8 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wake Characterization of Building Clusters Immersed in Deep Boundary Layers\",\"authors\":\"Abhishek Mishra, Marco Placidi, Matteo Carpentieri, Alan Robins\",\"doi\":\"10.1007/s10546-023-00830-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Wind tunnel experiments were conducted to understand the effect of building array size ( N ), aspect ratio ( AR ), and the spacing between buildings ( $$W_S$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> ) on the mean structure and decay of their wakes. Arrays of size 3 $$\\\\times $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>×</mml:mo> </mml:math> 3, 4 $$\\\\times $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>×</mml:mo> </mml:math> 4,and 5 $$\\\\times $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>×</mml:mo> </mml:math> 5, AR = 4, 6, and 8, and $$W_S$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>S</mml:mi> </mml:msub> </mml:math> = 0.5 $$W_B$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 1 $$W_B$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> , 2 $$W_B$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> and 4 $$W_B$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> (where $$W_B$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>B</mml:mi> </mml:msub> </mml:math> is the building width) were considered. Three different wake regimes behind the building clusters were identified: near-, transition-, and far-wake regimes. The results suggest that the spatial extent of these wake regimes is governed by the overall array width ( $$W_A$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:math> ). The effects of individual buildings are observed to be dominant in the near-wake regime ( $$0<x/W_A< {0.45}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> </mml:mrow> </mml:math> ) where individual wakes appear behind each building. These wakes are observed to merge in the transition-wake region ( $${0.45}< x/W_A < 1.5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mn>0.45</mml:mn> </mml:mrow> <mml:mo><</mml:mo> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo><</mml:mo> <mml:mn>1.5</mml:mn> </mml:mrow> </mml:math> ), forming a combined wake in which the individual contributions are no longer apparent. In the far-wake regime ( $$x/W_A > 1.5$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>/</mml:mo> <mml:msub> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo>></mml:mo> <mml:mn>1.5</mml:mn> </mml:mrow> </mml:math> ), clusters’ wakes are akin to those developing downwind of a single isolated building. Accordingly, new local and global scaling parameters in the near- and far-wake regimes are introduced. The decay of the centreline velocity deficit is then modelled as a function of the three parameters considered in the experiment.\",\"PeriodicalId\":9153,\"journal\":{\"name\":\"Boundary-Layer Meteorology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary-Layer Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10546-023-00830-0\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary-Layer Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10546-023-00830-0","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要通过风洞实验研究了建筑阵列尺寸(N)、建筑展弦比(AR)和建筑间距($$W_S$$ W S)对尾迹平均结构和衰减的影响。考虑大小为3 $$\times $$ × 3,4 $$\times $$ × 4和5 $$\times $$ × 5的数组,AR = 4,6和8,$$W_S$$ ws = 0.5 $$W_B$$ wb, 1 $$W_B$$ wb, 2 $$W_B$$ wb和4 $$W_B$$ wb(其中$$W_B$$ wb为建筑物宽度)。确定了建筑群背后的三种不同的尾流状态:近尾流、过渡尾流和远尾流状态。结果表明,这些尾迹的空间范围是由总阵列宽度($$W_A$$ W A)控制的。单个建筑物的影响在近尾流状态下占主导地位($$0<x/W_A< {0.45}$$ 0 &lt;x / W &lt;0.45),每个建筑后面都有单独的尾流。观察到这些尾迹在过渡尾迹区域合并($${0.45}< x/W_A < 1.5$$ 0.45 &lt;x / W &lt;1.5),形成一个组合尾流,其中个体的贡献不再明显。远尾流状态下($$x/W_A > 1.5$$ x / W A &gt;1.5),集群的尾流类似于单个孤立建筑顺风处的尾流。因此,在近尾流和远尾流中引入了新的局部和全局尺度参数。然后将中线速度差的衰减建模为实验中考虑的三个参数的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wake Characterization of Building Clusters Immersed in Deep Boundary Layers

Wake Characterization of Building Clusters Immersed in Deep Boundary Layers
Abstract Wind tunnel experiments were conducted to understand the effect of building array size ( N ), aspect ratio ( AR ), and the spacing between buildings ( $$W_S$$ W S ) on the mean structure and decay of their wakes. Arrays of size 3 $$\times $$ × 3, 4 $$\times $$ × 4,and 5 $$\times $$ × 5, AR = 4, 6, and 8, and $$W_S$$ W S = 0.5 $$W_B$$ W B , 1 $$W_B$$ W B , 2 $$W_B$$ W B and 4 $$W_B$$ W B (where $$W_B$$ W B is the building width) were considered. Three different wake regimes behind the building clusters were identified: near-, transition-, and far-wake regimes. The results suggest that the spatial extent of these wake regimes is governed by the overall array width ( $$W_A$$ W A ). The effects of individual buildings are observed to be dominant in the near-wake regime ( $$0 0 < x / W A < 0.45 ) where individual wakes appear behind each building. These wakes are observed to merge in the transition-wake region ( $${0.45}< x/W_A < 1.5$$ 0.45 < x / W A < 1.5 ), forming a combined wake in which the individual contributions are no longer apparent. In the far-wake regime ( $$x/W_A > 1.5$$ x / W A > 1.5 ), clusters’ wakes are akin to those developing downwind of a single isolated building. Accordingly, new local and global scaling parameters in the near- and far-wake regimes are introduced. The decay of the centreline velocity deficit is then modelled as a function of the three parameters considered in the experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary-Layer Meteorology
Boundary-Layer Meteorology 地学-气象与大气科学
CiteScore
7.50
自引率
14.00%
发文量
72
审稿时长
12 months
期刊介绍: Boundary-Layer Meteorology offers several publishing options: Research Letters, Research Articles, and Notes and Comments. The Research Letters section is designed to allow quick dissemination of new scientific findings, with an initial review period of no longer than one month. The Research Articles section offers traditional scientific papers that present results and interpretations based on substantial research studies or critical reviews of ongoing research. The Notes and Comments section comprises occasional notes and comments on specific topics with no requirement for rapid publication. Research Letters are limited in size to five journal pages, including no more than three figures, and cannot contain supplementary online material; Research Articles are generally fifteen to twenty pages in length with no more than fifteen figures; Notes and Comments are limited to ten journal pages and five figures. Authors submitting Research Letters should include within their cover letter an explanation of the need for rapid publication. More information regarding all publication formats can be found in the recent Editorial ‘Introducing Research Letters to Boundary-Layer Meteorology’.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信