{"title":"平面上实多项式映射的非性质集的计算","authors":"Boulos El Hilany, Elias Tsigaridas","doi":"10.1007/s10013-023-00652-0","DOIUrl":null,"url":null,"abstract":"Abstract We introduce novel mathematical and computational tools to develop a complete algorithm for computing the set of non-properness of polynomials maps in the plane. In particular, this set, which we call the Jelonek set , is a subset of $$\\mathbb {K}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , where a dominant polynomial map $$f: \\mathbb {K}^2 \\rightarrow \\mathbb {K}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>→</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> is not proper; $$\\mathbb {K}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>K</mml:mi> </mml:math> could be either $$\\mathbb {C}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>C</mml:mi> </mml:math> or $$\\mathbb {R}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>R</mml:mi> </mml:math> . Unlike all the previously known approaches we make no assumptions on f whenever $$\\mathbb {K} = \\mathbb {R}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> ; this is the first algorithm with this property. The algorithm takes into account the Newton polytopes of the polynomials. As a byproduct we provide a finer representation of the set of non-properness as a union of semi-algebraic curves, that correspond to edges of the Newton polytopes, which is of independent interest. Finally, we present a precise Boolean complexity analysis of the algorithm and a prototype implementation in maple .","PeriodicalId":45919,"journal":{"name":"Vietnam Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the Non-properness Set of Real Polynomial Maps in the Plane\",\"authors\":\"Boulos El Hilany, Elias Tsigaridas\",\"doi\":\"10.1007/s10013-023-00652-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce novel mathematical and computational tools to develop a complete algorithm for computing the set of non-properness of polynomials maps in the plane. In particular, this set, which we call the Jelonek set , is a subset of $$\\\\mathbb {K}^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , where a dominant polynomial map $$f: \\\\mathbb {K}^2 \\\\rightarrow \\\\mathbb {K}^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>→</mml:mo> <mml:msup> <mml:mrow> <mml:mi>K</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> is not proper; $$\\\\mathbb {K}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>K</mml:mi> </mml:math> could be either $$\\\\mathbb {C}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>C</mml:mi> </mml:math> or $$\\\\mathbb {R}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>R</mml:mi> </mml:math> . Unlike all the previously known approaches we make no assumptions on f whenever $$\\\\mathbb {K} = \\\\mathbb {R}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>=</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> ; this is the first algorithm with this property. The algorithm takes into account the Newton polytopes of the polynomials. As a byproduct we provide a finer representation of the set of non-properness as a union of semi-algebraic curves, that correspond to edges of the Newton polytopes, which is of independent interest. Finally, we present a precise Boolean complexity analysis of the algorithm and a prototype implementation in maple .\",\"PeriodicalId\":45919,\"journal\":{\"name\":\"Vietnam Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10013-023-00652-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10013-023-00652-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要引入新的数学和计算工具,提出了一种计算平面上多项式映射非适当集的完整算法。特别地,这个集合,我们称之为Jelonek集合,是$$\mathbb {K}^2$$ K 2的一个子集,其中一个优势多项式映射$$f: \mathbb {K}^2 \rightarrow \mathbb {K}^2$$ f: K 2→K 2是不合适的;$$\mathbb {K}$$ K可以是$$\mathbb {C}$$ C或者$$\mathbb {R}$$ R。不像以前所有已知的方法,当$$\mathbb {K} = \mathbb {R}$$ K = R时,我们不对f做任何假设;这是第一个具有这种性质的算法。该算法考虑了多项式的牛顿多面体。作为一个副产品,我们提供了一个更精细的非适当性集合的表示作为半代数曲线的并,这些曲线对应于牛顿多面体的边,这是一个独立的兴趣。最后,我们对该算法进行了精确的布尔复杂度分析,并在maple中实现了原型。
Computing the Non-properness Set of Real Polynomial Maps in the Plane
Abstract We introduce novel mathematical and computational tools to develop a complete algorithm for computing the set of non-properness of polynomials maps in the plane. In particular, this set, which we call the Jelonek set , is a subset of $$\mathbb {K}^2$$ K2 , where a dominant polynomial map $$f: \mathbb {K}^2 \rightarrow \mathbb {K}^2$$ f:K2→K2 is not proper; $$\mathbb {K}$$ K could be either $$\mathbb {C}$$ C or $$\mathbb {R}$$ R . Unlike all the previously known approaches we make no assumptions on f whenever $$\mathbb {K} = \mathbb {R}$$ K=R ; this is the first algorithm with this property. The algorithm takes into account the Newton polytopes of the polynomials. As a byproduct we provide a finer representation of the set of non-properness as a union of semi-algebraic curves, that correspond to edges of the Newton polytopes, which is of independent interest. Finally, we present a precise Boolean complexity analysis of the algorithm and a prototype implementation in maple .
期刊介绍:
Vietnam Journal of Mathematics was originally founded in 1973 by the Vietnam Academy of Science and Technology and the Vietnam Mathematical Society. Published by Springer from 1997 to 2005 and since 2013, this quarterly journal is open to contributions from researchers from all over the world, where all submitted articles are peer-reviewed by experts worldwide. It aims to publish high-quality original research papers and review articles in all active areas of pure and applied mathematics.