扩展上精细Selmer群的结构

IF 0.6 3区 数学 Q3 MATHEMATICS
MENG FAI LIM
{"title":"扩展上精细Selmer群的结构","authors":"MENG FAI LIM","doi":"10.1017/s0305004123000531","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the study of the fine Selmer group of an abelian variety over a $\\mathbb{Z}_{p}$ -extension which is not necessarily cyclotomic. It has been conjectured that these fine Selmer groups are always torsion over $\\mathbb{Z}_{p}[[ \\Gamma ]]$ , where $\\Gamma$ is the Galois group of the $\\mathbb{Z}_{p}$ -extension in question. In this paper, we shall provide several strong evidences towards this conjecture. Namely, we show that the conjectural torsionness is consistent with the pseudo-nullity conjecture of Coates–Sujatha. We also show that if the conjecture is known for the cyclotomic $\\mathbb{Z}_{p}$ -extension, then it holds for almost all $\\mathbb{Z}_{p}$ -extensions. We then carry out a similar study for the fine Selmer group of an elliptic modular form. When the modular forms are ordinary and come from a Hida family, we relate the torsionness of the fine Selmer groups of the specialization. This latter result allows us to show that the conjectural torsionness in certain cases is consistent with the growth number conjecture of Mazur. Finally, we end with some speculations on the torsionness of fine Selmer groups over an arbitrary p -adic Lie extension.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"24 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure of fine Selmer groups over -extensions\",\"authors\":\"MENG FAI LIM\",\"doi\":\"10.1017/s0305004123000531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is concerned with the study of the fine Selmer group of an abelian variety over a $\\\\mathbb{Z}_{p}$ -extension which is not necessarily cyclotomic. It has been conjectured that these fine Selmer groups are always torsion over $\\\\mathbb{Z}_{p}[[ \\\\Gamma ]]$ , where $\\\\Gamma$ is the Galois group of the $\\\\mathbb{Z}_{p}$ -extension in question. In this paper, we shall provide several strong evidences towards this conjecture. Namely, we show that the conjectural torsionness is consistent with the pseudo-nullity conjecture of Coates–Sujatha. We also show that if the conjecture is known for the cyclotomic $\\\\mathbb{Z}_{p}$ -extension, then it holds for almost all $\\\\mathbb{Z}_{p}$ -extensions. We then carry out a similar study for the fine Selmer group of an elliptic modular form. When the modular forms are ordinary and come from a Hida family, we relate the torsionness of the fine Selmer groups of the specialization. This latter result allows us to show that the conjectural torsionness in certain cases is consistent with the growth number conjecture of Mazur. Finally, we end with some speculations on the torsionness of fine Selmer groups over an arbitrary p -adic Lie extension.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004123000531\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0305004123000531","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要研究了不一定是分环的$\mathbb{Z}_{p}$ -扩展上的一个阿贝尔变元的精细Selmer群。据推测,这些优良的Selmer群总是在$\mathbb{Z}_{p}[[\Gamma]]$上挠,其中$\Gamma$是所讨论的$\mathbb{Z}_{p}$ -扩展的伽罗瓦群。在本文中,我们将为这一猜想提供几个强有力的证据。也就是说,我们证明了猜想扭度与coats - sujatha的伪零猜想是一致的。我们也证明了如果这个猜想对于$\mathbb{Z}_{p}$ -扩展是已知的,那么它对于几乎所有$\mathbb{Z}_{p}$ -扩展都成立。然后我们对椭圆模形式的精细Selmer群进行了类似的研究。当模形式是普通的并且来自Hida族时,我们联系了特殊化的精细Selmer群的扭度。后一个结果使我们能够证明,在某些情况下,猜想的扭度与Mazur的生长数猜想是一致的。最后,我们对任意p进Lie扩展上的精细Selmer群的挠性进行了一些推测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure of fine Selmer groups over -extensions
Abstract This paper is concerned with the study of the fine Selmer group of an abelian variety over a $\mathbb{Z}_{p}$ -extension which is not necessarily cyclotomic. It has been conjectured that these fine Selmer groups are always torsion over $\mathbb{Z}_{p}[[ \Gamma ]]$ , where $\Gamma$ is the Galois group of the $\mathbb{Z}_{p}$ -extension in question. In this paper, we shall provide several strong evidences towards this conjecture. Namely, we show that the conjectural torsionness is consistent with the pseudo-nullity conjecture of Coates–Sujatha. We also show that if the conjecture is known for the cyclotomic $\mathbb{Z}_{p}$ -extension, then it holds for almost all $\mathbb{Z}_{p}$ -extensions. We then carry out a similar study for the fine Selmer group of an elliptic modular form. When the modular forms are ordinary and come from a Hida family, we relate the torsionness of the fine Selmer groups of the specialization. This latter result allows us to show that the conjectural torsionness in certain cases is consistent with the growth number conjecture of Mazur. Finally, we end with some speculations on the torsionness of fine Selmer groups over an arbitrary p -adic Lie extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信