通过测量非赫米提算子增强参数估计

Jianning Li, Haodi Liu, Zhihai Wang, X. X. Yi
{"title":"通过测量非赫米提算子增强参数估计","authors":"Jianning Li,&nbsp;Haodi Liu,&nbsp;Zhihai Wang,&nbsp;X. X. Yi","doi":"10.1007/s43673-023-00089-0","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum metrology aims at delivering new quantum-mechanical improvement to technologies of parameter estimations with precision bounded by the quantum Cramér-Rao bound. The currently used quantum Cramér-Rao bound was established with measurements of observables restricted to be Hermitian. This constrains the bound and limits the precision of parameter estimation. In this paper, we lift the constraint and derive a previously unknown quantum Cramér-Rao bound. We find that the new bound can reach arbitrary small value with mixed states and it breaks the Heisenberg limit in some cases. We construct a setup to measure non-Hermitian operators and discuss the saturation of the present bound. Two examples—the phase estimation with Greenberger-Horne-Zeilinger states of trapped ions and the adiabatic quantum parameter estimation with the nuclear magnetic resonance—are employed to demonstrate the theory. The present study might open a new research direction—non-Hermitian quantum metrology.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-023-00089-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced parameter estimation by measurement of non-Hermitian operators\",\"authors\":\"Jianning Li,&nbsp;Haodi Liu,&nbsp;Zhihai Wang,&nbsp;X. X. Yi\",\"doi\":\"10.1007/s43673-023-00089-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum metrology aims at delivering new quantum-mechanical improvement to technologies of parameter estimations with precision bounded by the quantum Cramér-Rao bound. The currently used quantum Cramér-Rao bound was established with measurements of observables restricted to be Hermitian. This constrains the bound and limits the precision of parameter estimation. In this paper, we lift the constraint and derive a previously unknown quantum Cramér-Rao bound. We find that the new bound can reach arbitrary small value with mixed states and it breaks the Heisenberg limit in some cases. We construct a setup to measure non-Hermitian operators and discuss the saturation of the present bound. Two examples—the phase estimation with Greenberger-Horne-Zeilinger states of trapped ions and the adiabatic quantum parameter estimation with the nuclear magnetic resonance—are employed to demonstrate the theory. The present study might open a new research direction—non-Hermitian quantum metrology.</p></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-023-00089-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-023-00089-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-023-00089-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子计量学旨在为参数估计技术提供新的量子力学改进,其精度以量子克拉梅尔-拉奥约束为界。目前使用的量子克拉梅尔-拉奥约束是在测量被限制为赫米特的观测变量时建立的。这就约束了边界并限制了参数估计的精度。在本文中,我们取消了这一限制,并推导出了一个之前未知的量子克拉梅尔-拉奥约束。我们发现,新约束可以达到混合态的任意小值,并且在某些情况下打破了海森堡极限。我们构建了一个测量非赫米提算子的装置,并讨论了当前约束的饱和问题。我们用两个例子--用格林伯格-霍恩-蔡林格困离子态进行相位估计和用核磁共振进行绝热量子参数估计--来证明这一理论。本研究可能会开辟一个新的研究方向--非赫米提量子计量学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced parameter estimation by measurement of non-Hermitian operators

Quantum metrology aims at delivering new quantum-mechanical improvement to technologies of parameter estimations with precision bounded by the quantum Cramér-Rao bound. The currently used quantum Cramér-Rao bound was established with measurements of observables restricted to be Hermitian. This constrains the bound and limits the precision of parameter estimation. In this paper, we lift the constraint and derive a previously unknown quantum Cramér-Rao bound. We find that the new bound can reach arbitrary small value with mixed states and it breaks the Heisenberg limit in some cases. We construct a setup to measure non-Hermitian operators and discuss the saturation of the present bound. Two examples—the phase estimation with Greenberger-Horne-Zeilinger states of trapped ions and the adiabatic quantum parameter estimation with the nuclear magnetic resonance—are employed to demonstrate the theory. The present study might open a new research direction—non-Hermitian quantum metrology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信