{"title":"NAS-YOLOX:一种基于神经结构搜索和多尺度关注的SAR舰船检测方法","authors":"Hao Wang, Dezhi Han, Mingming Cui, Chongqing Chen","doi":"10.1080/09540091.2023.2257399","DOIUrl":null,"url":null,"abstract":"Due to the advantages of all-weather capability and high resolution, synthetic aperture radar (SAR) image ship detection has been widely applied in the military, civilian, and other domains. However, SAR-based ship detection suffers from limitations such as strong scattering of targets, multiple scales, and background interference, leading to low detection accuracy. To address these limitations, this paper presents a novel SAR ship detection method, NAS-YOLOX, which leverages the efficient feature fusion of the neural architecture search feature pyramid network (NAS-FPN) and the effective feature extraction of the multi-scale attention mechanism. Specifically, NAS-FPN replaces the PAFPN in the baseline YOLOX, greatly enhances the fusion performance of the model’s multi-scale feature information, and a dilated convolution feature enhancement module (DFEM) is designed and integrated into the backbone network to improve the network’s receptive field and target information extraction capabilities. Furthermore, a multi-scale channel-spatial attention (MCSA) mechanism is conceptualised to enhance focus on target regions, improve small-scale target detection, and adapt to multi-scale targets. Additionally, extensive experiments conducted on benchmark datasets, HRSID and SSDD, demonstrate that NAS-YOLOX achieves comparable or superior performance compared to other state-of-the-art ship detection models and reaches best accuracies of 91.1% and 97.2% on AP0.5, respectively.","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":"303 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NAS-YOLOX: a SAR ship detection using neural architecture search and multi-scale attention\",\"authors\":\"Hao Wang, Dezhi Han, Mingming Cui, Chongqing Chen\",\"doi\":\"10.1080/09540091.2023.2257399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the advantages of all-weather capability and high resolution, synthetic aperture radar (SAR) image ship detection has been widely applied in the military, civilian, and other domains. However, SAR-based ship detection suffers from limitations such as strong scattering of targets, multiple scales, and background interference, leading to low detection accuracy. To address these limitations, this paper presents a novel SAR ship detection method, NAS-YOLOX, which leverages the efficient feature fusion of the neural architecture search feature pyramid network (NAS-FPN) and the effective feature extraction of the multi-scale attention mechanism. Specifically, NAS-FPN replaces the PAFPN in the baseline YOLOX, greatly enhances the fusion performance of the model’s multi-scale feature information, and a dilated convolution feature enhancement module (DFEM) is designed and integrated into the backbone network to improve the network’s receptive field and target information extraction capabilities. Furthermore, a multi-scale channel-spatial attention (MCSA) mechanism is conceptualised to enhance focus on target regions, improve small-scale target detection, and adapt to multi-scale targets. Additionally, extensive experiments conducted on benchmark datasets, HRSID and SSDD, demonstrate that NAS-YOLOX achieves comparable or superior performance compared to other state-of-the-art ship detection models and reaches best accuracies of 91.1% and 97.2% on AP0.5, respectively.\",\"PeriodicalId\":50629,\"journal\":{\"name\":\"Connection Science\",\"volume\":\"303 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connection Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09540091.2023.2257399\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2023.2257399","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
NAS-YOLOX: a SAR ship detection using neural architecture search and multi-scale attention
Due to the advantages of all-weather capability and high resolution, synthetic aperture radar (SAR) image ship detection has been widely applied in the military, civilian, and other domains. However, SAR-based ship detection suffers from limitations such as strong scattering of targets, multiple scales, and background interference, leading to low detection accuracy. To address these limitations, this paper presents a novel SAR ship detection method, NAS-YOLOX, which leverages the efficient feature fusion of the neural architecture search feature pyramid network (NAS-FPN) and the effective feature extraction of the multi-scale attention mechanism. Specifically, NAS-FPN replaces the PAFPN in the baseline YOLOX, greatly enhances the fusion performance of the model’s multi-scale feature information, and a dilated convolution feature enhancement module (DFEM) is designed and integrated into the backbone network to improve the network’s receptive field and target information extraction capabilities. Furthermore, a multi-scale channel-spatial attention (MCSA) mechanism is conceptualised to enhance focus on target regions, improve small-scale target detection, and adapt to multi-scale targets. Additionally, extensive experiments conducted on benchmark datasets, HRSID and SSDD, demonstrate that NAS-YOLOX achieves comparable or superior performance compared to other state-of-the-art ship detection models and reaches best accuracies of 91.1% and 97.2% on AP0.5, respectively.
期刊介绍:
Connection Science is an interdisciplinary journal dedicated to exploring the convergence of the analytic and synthetic sciences, including neuroscience, computational modelling, artificial intelligence, machine learning, deep learning, Database, Big Data, quantum computing, Blockchain, Zero-Knowledge, Internet of Things, Cybersecurity, and parallel and distributed computing.
A strong focus is on the articles arising from connectionist, probabilistic, dynamical, or evolutionary approaches in aspects of Computer Science, applied applications, and systems-level computational subjects that seek to understand models in science and engineering.