麦芽糊精火焰喷雾干燥

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Mariia Sobulska
{"title":"麦芽糊精火焰喷雾干燥","authors":"Mariia Sobulska","doi":"10.1080/07373937.2023.2261047","DOIUrl":null,"url":null,"abstract":"AbstractIn the frame of this work, the experimental analysis of the reconstitution properties, sorption isotherms and the Fourier-transform infrared spectroscopy (FTIR) spectra of maltodextrin powder was carried out. Before the analysis the substance was dried by standard spray drying method or flame spray drying (FSD). During the analyses, the influence of the applied FSD parameters on the analyzed properties was also estimated. The powders dried using the standard spray dryer were characterized by a better wettability parameter, which was related to a high bulk density. A shorter solubility time was obtained for powders dried by the FSD method, which may be explained by the larger particle diameters. Analyzing maltodextrin powders dried with the FSD, a significant influence of the atomization pressure and particle size on the wettability parameter was found. Application of FSD method does not affect the sorption characteristics of maltodextrin and does not change significantly the chemical structure of the material, since characteristic peaks of FTIR spectra were preserved after the FSD.Keywords: Flame spray dryingsorption isothermsFTIRwettabilitysolubility time AcknowledgementsThe author is grateful to Dr Marcin Piatkowski for help in carrying out the drying tests, Dr Aleksandra Kedzierska-Sar for help with DVS analysis and to mgr Michal Krempski-Smejda for help with FTIR spectroscopy.Disclosure statementNo potential conflict of interest was reported by the authors.","PeriodicalId":11374,"journal":{"name":"Drying Technology","volume":"36 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flame spray drying of maltodextrin\",\"authors\":\"Mariia Sobulska\",\"doi\":\"10.1080/07373937.2023.2261047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn the frame of this work, the experimental analysis of the reconstitution properties, sorption isotherms and the Fourier-transform infrared spectroscopy (FTIR) spectra of maltodextrin powder was carried out. Before the analysis the substance was dried by standard spray drying method or flame spray drying (FSD). During the analyses, the influence of the applied FSD parameters on the analyzed properties was also estimated. The powders dried using the standard spray dryer were characterized by a better wettability parameter, which was related to a high bulk density. A shorter solubility time was obtained for powders dried by the FSD method, which may be explained by the larger particle diameters. Analyzing maltodextrin powders dried with the FSD, a significant influence of the atomization pressure and particle size on the wettability parameter was found. Application of FSD method does not affect the sorption characteristics of maltodextrin and does not change significantly the chemical structure of the material, since characteristic peaks of FTIR spectra were preserved after the FSD.Keywords: Flame spray dryingsorption isothermsFTIRwettabilitysolubility time AcknowledgementsThe author is grateful to Dr Marcin Piatkowski for help in carrying out the drying tests, Dr Aleksandra Kedzierska-Sar for help with DVS analysis and to mgr Michal Krempski-Smejda for help with FTIR spectroscopy.Disclosure statementNo potential conflict of interest was reported by the authors.\",\"PeriodicalId\":11374,\"journal\":{\"name\":\"Drying Technology\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drying Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07373937.2023.2261047\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drying Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07373937.2023.2261047","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本研究的框架下,对麦芽糊精粉的重构性质、吸附等温线和傅里叶红外光谱(FTIR)进行了实验分析。在分析之前,用标准喷雾干燥法或火焰喷雾干燥法(FSD)对物质进行干燥。在分析过程中,还估计了所应用的FSD参数对所分析性能的影响。使用标准喷雾干燥机干燥的粉末具有较好的润湿性参数,这与高堆积密度有关。用FSD方法干燥的粉末溶解时间较短,这可能是由于颗粒直径较大。对FSD干燥的麦芽糊精粉体进行分析,发现雾化压力和粒径对其润湿性参数有显著影响。FSD法的应用不会影响麦芽糖糊精的吸附特性,也不会显著改变材料的化学结构,因为FSD后FTIR光谱的特征峰被保留了下来。致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢致谢披露声明作者未报告潜在的利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flame spray drying of maltodextrin
AbstractIn the frame of this work, the experimental analysis of the reconstitution properties, sorption isotherms and the Fourier-transform infrared spectroscopy (FTIR) spectra of maltodextrin powder was carried out. Before the analysis the substance was dried by standard spray drying method or flame spray drying (FSD). During the analyses, the influence of the applied FSD parameters on the analyzed properties was also estimated. The powders dried using the standard spray dryer were characterized by a better wettability parameter, which was related to a high bulk density. A shorter solubility time was obtained for powders dried by the FSD method, which may be explained by the larger particle diameters. Analyzing maltodextrin powders dried with the FSD, a significant influence of the atomization pressure and particle size on the wettability parameter was found. Application of FSD method does not affect the sorption characteristics of maltodextrin and does not change significantly the chemical structure of the material, since characteristic peaks of FTIR spectra were preserved after the FSD.Keywords: Flame spray dryingsorption isothermsFTIRwettabilitysolubility time AcknowledgementsThe author is grateful to Dr Marcin Piatkowski for help in carrying out the drying tests, Dr Aleksandra Kedzierska-Sar for help with DVS analysis and to mgr Michal Krempski-Smejda for help with FTIR spectroscopy.Disclosure statementNo potential conflict of interest was reported by the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drying Technology
Drying Technology 工程技术-工程:化工
CiteScore
7.40
自引率
15.20%
发文量
133
审稿时长
2 months
期刊介绍: Drying Technology explores the science and technology, and the engineering aspects of drying, dewatering, and related topics. Articles in this multi-disciplinary journal cover the following themes: -Fundamental and applied aspects of dryers in diverse industrial sectors- Mathematical modeling of drying and dryers- Computer modeling of transport processes in multi-phase systems- Material science aspects of drying- Transport phenomena in porous media- Design, scale-up, control and off-design analysis of dryers- Energy, environmental, safety and techno-economic aspects- Quality parameters in drying operations- Pre- and post-drying operations- Novel drying technologies. This peer-reviewed journal provides an archival reference for scientists, engineers, and technologists in all industrial sectors and academia concerned with any aspect of thermal or nonthermal dehydration and allied operations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信