Noelia Bazarra, José R. Fernández, Ramón Quintanilla
{"title":"非中心对称刚性固体的Moore - Gibson - Thompson热传导方程","authors":"Noelia Bazarra, José R. Fernández, Ramón Quintanilla","doi":"10.1002/zamm.202300531","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a new thermal model based on the so‐called Moore‐Gibson‐Thompson equation for heat conduction, assuming that the material is not centrosymmetric. The existence of a unique solution is proved, although only the main steps of its proof are provided for the sake of simplicity in the presentation. A sufficient condition is proposed to guarantee the stability of the solutions. Then, a fully discrete scheme is introduced by using the classical finite element scheme and the implicit Euler scheme. A discrete stability property and an a priori error analysis are shown, from which the linear convergence of the approximations is deduced. Finally, some numerical simulations in one‐dimensional examples are performed to show the behavior of the discrete energy decay.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Moore‐Gibson‐Thompson heat conduction equation for non centrosymmetric rigid solids\",\"authors\":\"Noelia Bazarra, José R. Fernández, Ramón Quintanilla\",\"doi\":\"10.1002/zamm.202300531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose a new thermal model based on the so‐called Moore‐Gibson‐Thompson equation for heat conduction, assuming that the material is not centrosymmetric. The existence of a unique solution is proved, although only the main steps of its proof are provided for the sake of simplicity in the presentation. A sufficient condition is proposed to guarantee the stability of the solutions. Then, a fully discrete scheme is introduced by using the classical finite element scheme and the implicit Euler scheme. A discrete stability property and an a priori error analysis are shown, from which the linear convergence of the approximations is deduced. Finally, some numerical simulations in one‐dimensional examples are performed to show the behavior of the discrete energy decay.\",\"PeriodicalId\":23924,\"journal\":{\"name\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300531\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300531","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Moore‐Gibson‐Thompson heat conduction equation for non centrosymmetric rigid solids
Abstract In this paper, we propose a new thermal model based on the so‐called Moore‐Gibson‐Thompson equation for heat conduction, assuming that the material is not centrosymmetric. The existence of a unique solution is proved, although only the main steps of its proof are provided for the sake of simplicity in the presentation. A sufficient condition is proposed to guarantee the stability of the solutions. Then, a fully discrete scheme is introduced by using the classical finite element scheme and the implicit Euler scheme. A discrete stability property and an a priori error analysis are shown, from which the linear convergence of the approximations is deduced. Finally, some numerical simulations in one‐dimensional examples are performed to show the behavior of the discrete energy decay.
期刊介绍:
ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.