关于pq - baer环和拟baer环上的交叉积环

IF 0.7 Q2 MATHEMATICS
Eltiyeb Ali
{"title":"关于pq - baer环和拟baer环上的交叉积环","authors":"Eltiyeb Ali","doi":"10.28924/2291-8639-21-2023-108","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a ring R and a monoid M equipped with a twisting map f: M×M -> U(R) and an action map ω: M -> Aut(R). The main objective of our study is to investigate the conditions under which the crossed product structure R⋊M is p.q.-Baer and quasi-Baer rings, and how this property relates to the p.q.-Baer property of R and the existence of a generalized join in I(R) for M-indexed subsets, where I(R) denotes the set of ideals of R. Additionally, we prove a connection between R being a left p.q.-Baer ring and the CM-quasi-Armendariz property. Moreover, we prove that for any element φ2=φ, there exist an idempotent element e2=e such that φ = ce. We then prove that R is quasi-Baer if and only if the crossed product structure R⋊M is quasi-Baer. Finally, we present novel results regarding various constructions for crossed products.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Crossed Product Rings Over p.q.-Baer and Quasi-Baer Rings\",\"authors\":\"Eltiyeb Ali\",\"doi\":\"10.28924/2291-8639-21-2023-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a ring R and a monoid M equipped with a twisting map f: M×M -> U(R) and an action map ω: M -> Aut(R). The main objective of our study is to investigate the conditions under which the crossed product structure R⋊M is p.q.-Baer and quasi-Baer rings, and how this property relates to the p.q.-Baer property of R and the existence of a generalized join in I(R) for M-indexed subsets, where I(R) denotes the set of ideals of R. Additionally, we prove a connection between R being a left p.q.-Baer ring and the CM-quasi-Armendariz property. Moreover, we prove that for any element φ2=φ, there exist an idempotent element e2=e such that φ = ce. We then prove that R is quasi-Baer if and only if the crossed product structure R⋊M is quasi-Baer. Finally, we present novel results regarding various constructions for crossed products.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑一个环R和一个具扭曲映射f: M×M ->U(R)和行动图ω: M ->Aut (R)。本文的主要目的是研究交叉积结构R - M是p -q - baer环和拟baer环的条件,以及该性质与R的p -q - baer性质和M-索引子集I(R)中广义连接的存在性之间的关系,其中I(R)表示R的理想集。此外,我们证明了R是左p -q - baer环与cm -拟armendariz性质之间的联系。进一步证明了对于任意元素φ2=φ,存在一个幂等元素e2=e,使得φ = ce。然后证明R是拟贝尔的当且仅当交叉积结构R × M是拟贝尔的。最后,我们提出了关于交叉产物的各种结构的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Crossed Product Rings Over p.q.-Baer and Quasi-Baer Rings
In this paper, we consider a ring R and a monoid M equipped with a twisting map f: M×M -> U(R) and an action map ω: M -> Aut(R). The main objective of our study is to investigate the conditions under which the crossed product structure R⋊M is p.q.-Baer and quasi-Baer rings, and how this property relates to the p.q.-Baer property of R and the existence of a generalized join in I(R) for M-indexed subsets, where I(R) denotes the set of ideals of R. Additionally, we prove a connection between R being a left p.q.-Baer ring and the CM-quasi-Armendariz property. Moreover, we prove that for any element φ2=φ, there exist an idempotent element e2=e such that φ = ce. We then prove that R is quasi-Baer if and only if the crossed product structure R⋊M is quasi-Baer. Finally, we present novel results regarding various constructions for crossed products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信