Dominik Quillet, Vincent Boulanger, David Rancourt
{"title":"一种并联混合动力涡桨支线飞机的非设计性能分析","authors":"Dominik Quillet, Vincent Boulanger, David Rancourt","doi":"10.2514/1.c036927","DOIUrl":null,"url":null,"abstract":"Hybrid electric propulsion is one of the alternative solutions for reducing fuel burn and lower [Formula: see text] emissions while keeping a reasonable battery mass for regional turboprop aircraft operating on short routes. Most studies reporting fuel burn reductions evaluate the aircraft on the design mission, although regional transport aircraft rarely operate under these conditions. Therefore, considering its off-design performance is essential for providing a more complete understanding of aircraft capabilities under various operating conditions. Under these flight conditions, the multi-energy management aspect of hybrid propulsion and the fixed size of the batteries could have a significant impact on the system robustness in off-design operation. In this study, the off-design performance of an existing regional turboprop aircraft retrofitted with a parallel hybrid electric powertrain is assessed. Fuel burn benefits are evaluated on the payload–range diagram for an initial hybrid design and compared to the baseline aircraft. Then, using a novel sizing approach, considering a typical mission operation, this study shows an average improvement of [Formula: see text] percentage point on fuel burn benefits relative to the initial hybrid aircraft, creating a more robust design.","PeriodicalId":14927,"journal":{"name":"Journal of Aircraft","volume":"4 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-Design Performance Analysis of a Parallel Hybrid Electric Regional Turboprop Aircraft\",\"authors\":\"Dominik Quillet, Vincent Boulanger, David Rancourt\",\"doi\":\"10.2514/1.c036927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid electric propulsion is one of the alternative solutions for reducing fuel burn and lower [Formula: see text] emissions while keeping a reasonable battery mass for regional turboprop aircraft operating on short routes. Most studies reporting fuel burn reductions evaluate the aircraft on the design mission, although regional transport aircraft rarely operate under these conditions. Therefore, considering its off-design performance is essential for providing a more complete understanding of aircraft capabilities under various operating conditions. Under these flight conditions, the multi-energy management aspect of hybrid propulsion and the fixed size of the batteries could have a significant impact on the system robustness in off-design operation. In this study, the off-design performance of an existing regional turboprop aircraft retrofitted with a parallel hybrid electric powertrain is assessed. Fuel burn benefits are evaluated on the payload–range diagram for an initial hybrid design and compared to the baseline aircraft. Then, using a novel sizing approach, considering a typical mission operation, this study shows an average improvement of [Formula: see text] percentage point on fuel burn benefits relative to the initial hybrid aircraft, creating a more robust design.\",\"PeriodicalId\":14927,\"journal\":{\"name\":\"Journal of Aircraft\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aircraft\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.c036927\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aircraft","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.c036927","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Off-Design Performance Analysis of a Parallel Hybrid Electric Regional Turboprop Aircraft
Hybrid electric propulsion is one of the alternative solutions for reducing fuel burn and lower [Formula: see text] emissions while keeping a reasonable battery mass for regional turboprop aircraft operating on short routes. Most studies reporting fuel burn reductions evaluate the aircraft on the design mission, although regional transport aircraft rarely operate under these conditions. Therefore, considering its off-design performance is essential for providing a more complete understanding of aircraft capabilities under various operating conditions. Under these flight conditions, the multi-energy management aspect of hybrid propulsion and the fixed size of the batteries could have a significant impact on the system robustness in off-design operation. In this study, the off-design performance of an existing regional turboprop aircraft retrofitted with a parallel hybrid electric powertrain is assessed. Fuel burn benefits are evaluated on the payload–range diagram for an initial hybrid design and compared to the baseline aircraft. Then, using a novel sizing approach, considering a typical mission operation, this study shows an average improvement of [Formula: see text] percentage point on fuel burn benefits relative to the initial hybrid aircraft, creating a more robust design.
期刊介绍:
This Journal is devoted to the advancement of the applied science and technology of airborne flight through the dissemination of original archival papers describing significant advances in aircraft, the operation of aircraft, and applications of aircraft technology to other fields. The Journal publishes qualified papers on aircraft systems, air transportation, air traffic management, and multidisciplinary design optimization of aircraft, flight mechanics, flight and ground testing, applied computational fluid dynamics, flight safety, weather and noise hazards, human factors, airport design, airline operations, application of computers to aircraft including artificial intelligence/expert systems, production methods, engineering economic analyses, affordability, reliability, maintainability, and logistics support, integration of propulsion and control systems into aircraft design and operations, aircraft aerodynamics (including unsteady aerodynamics), structural design/dynamics , aeroelasticity, and aeroacoustics. It publishes papers on general aviation, military and civilian aircraft, UAV, STOL and V/STOL, subsonic, supersonic, transonic, and hypersonic aircraft. Papers are sought which comprehensively survey results of recent technical work with emphasis on aircraft technology application.