广义斐波那契-列奥纳多数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Urszula Bednarz, Małgorzata Wołowiec-Musiał
{"title":"广义斐波那契-列奥纳多数","authors":"Urszula Bednarz, Małgorzata Wołowiec-Musiał","doi":"10.1080/10236198.2023.2265509","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, by means of independent sets in a graph with multiplicity assigned to each set, we introduce generalized Fibonacci–Leonardo numbers, which are the common generalization of the classical Fibonacci and Leonardo numbers. We give the Binet formula, the generating function, and we prove some identities for generalized Fibonacci–Leonardo numbers. We also define matrix generators for the introduced numbers.Keywords: Fibonacci numbersLeonardo numbersindependent setsmatrix generatorAMS CLASSIFICATIONS: 11B3711B3911C20 AcknowledgmentsThe authors wish to thank the referee for all suggestions which improved this paper.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Fibonacci–Leonardo numbers\",\"authors\":\"Urszula Bednarz, Małgorzata Wołowiec-Musiał\",\"doi\":\"10.1080/10236198.2023.2265509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn this paper, by means of independent sets in a graph with multiplicity assigned to each set, we introduce generalized Fibonacci–Leonardo numbers, which are the common generalization of the classical Fibonacci and Leonardo numbers. We give the Binet formula, the generating function, and we prove some identities for generalized Fibonacci–Leonardo numbers. We also define matrix generators for the introduced numbers.Keywords: Fibonacci numbersLeonardo numbersindependent setsmatrix generatorAMS CLASSIFICATIONS: 11B3711B3911C20 AcknowledgmentsThe authors wish to thank the referee for all suggestions which improved this paper.Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10236198.2023.2265509\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10236198.2023.2265509","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文利用图中具有多重性的独立集,引入了广义Fibonacci - Leonardo数,它是经典Fibonacci数和Leonardo数的一般推广。给出了Binet公式和生成函数,并证明了一些广义fibonaci - leonardo数的恒等式。我们还为引入的数定义了矩阵生成器。关键词:斐波那契数莱昂纳多数独立集矩阵生成器ams分类:11B3711B3911C20致谢感谢审稿人对本文的改进提出的建议。披露声明作者未报告潜在的利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Fibonacci–Leonardo numbers
AbstractIn this paper, by means of independent sets in a graph with multiplicity assigned to each set, we introduce generalized Fibonacci–Leonardo numbers, which are the common generalization of the classical Fibonacci and Leonardo numbers. We give the Binet formula, the generating function, and we prove some identities for generalized Fibonacci–Leonardo numbers. We also define matrix generators for the introduced numbers.Keywords: Fibonacci numbersLeonardo numbersindependent setsmatrix generatorAMS CLASSIFICATIONS: 11B3711B3911C20 AcknowledgmentsThe authors wish to thank the referee for all suggestions which improved this paper.Disclosure statementNo potential conflict of interest was reported by the author(s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信