Rakesh Kumar Patnaik, Yu-Chen Lin, Ming Chih Ho, J. Andrew Yeh
{"title":"使用特征选择选择肝功能异常的一致呼吸生物标志物:一项初步研究","authors":"Rakesh Kumar Patnaik, Yu-Chen Lin, Ming Chih Ho, J. Andrew Yeh","doi":"10.1007/s12553-023-00787-7","DOIUrl":null,"url":null,"abstract":"Abstract Purpose Breath profiling has gained importance in recent years as it is a non-invasive technique to identify biomarkers for various diseases. Breath profiling of abnormal liver function in individuals for identifying potential biomarkers in exhaled breath could be a useful diagnostic tool. The objective of this study was to identify potential biomarkers in exhaled breath that remain stable and consistent during different physiological states, including rest and brief workouts, intending to develop a non-invasive diagnostic tool for detecting abnormal liver function. Method Our study employed a gas chromatography and mass-spectrometer quantified dataset for analysis. Machine learning techniques, including feature selection and model training, were used to rank and evaluate potential biomarkers' contributions to the model's performance. Statistical methods were applied to filter significant and consistent biomarkers. The final selected biomarkers were iterated for all possible combinations using machine learning algorithms to determine their accuracy range. Furthermore, classification models were used to evaluate the performance metrics of the biomarkers and compare models. Result The final selected biomarkers, including 2-Myristynoyl Pantetheine, Pterin-6 Carboxylic Acid, Methyl Mercaptan, N-Acetyl Cysteine, and Butyric Acid, exhibited stable levels in exhaled breath during different physiological states. They showed high accuracy and precision in detecting abnormal liver function. Our machine learning models achieved an accuracy rate ranging from 0.7 to 0.95 in all conditions, with precision, recall, prediction probability, and a 95% confidence interval ranging from 0.84 to 0.94, using various combinations of these biomarkers. Conclusion Our statistical and machine learning analysis identified significant and potential biomarkers that contribute to the detection of abnormal liver function. These biomarkers were consistent across different physiological states of the body in both patient and healthy groups. The use of breath samples and feature selection machine learning methods proved to be an accurate and reliable approach for identifying these biomarkers. Our findings provide valuable insights for future research in this field and can inform the development of non-invasive and cost-effective diagnostic tests for liver disease.","PeriodicalId":12941,"journal":{"name":"Health and Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selection of consistent breath biomarkers of abnormal liver function using feature selection: a pilot study\",\"authors\":\"Rakesh Kumar Patnaik, Yu-Chen Lin, Ming Chih Ho, J. Andrew Yeh\",\"doi\":\"10.1007/s12553-023-00787-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Purpose Breath profiling has gained importance in recent years as it is a non-invasive technique to identify biomarkers for various diseases. Breath profiling of abnormal liver function in individuals for identifying potential biomarkers in exhaled breath could be a useful diagnostic tool. The objective of this study was to identify potential biomarkers in exhaled breath that remain stable and consistent during different physiological states, including rest and brief workouts, intending to develop a non-invasive diagnostic tool for detecting abnormal liver function. Method Our study employed a gas chromatography and mass-spectrometer quantified dataset for analysis. Machine learning techniques, including feature selection and model training, were used to rank and evaluate potential biomarkers' contributions to the model's performance. Statistical methods were applied to filter significant and consistent biomarkers. The final selected biomarkers were iterated for all possible combinations using machine learning algorithms to determine their accuracy range. Furthermore, classification models were used to evaluate the performance metrics of the biomarkers and compare models. Result The final selected biomarkers, including 2-Myristynoyl Pantetheine, Pterin-6 Carboxylic Acid, Methyl Mercaptan, N-Acetyl Cysteine, and Butyric Acid, exhibited stable levels in exhaled breath during different physiological states. They showed high accuracy and precision in detecting abnormal liver function. Our machine learning models achieved an accuracy rate ranging from 0.7 to 0.95 in all conditions, with precision, recall, prediction probability, and a 95% confidence interval ranging from 0.84 to 0.94, using various combinations of these biomarkers. Conclusion Our statistical and machine learning analysis identified significant and potential biomarkers that contribute to the detection of abnormal liver function. These biomarkers were consistent across different physiological states of the body in both patient and healthy groups. The use of breath samples and feature selection machine learning methods proved to be an accurate and reliable approach for identifying these biomarkers. Our findings provide valuable insights for future research in this field and can inform the development of non-invasive and cost-effective diagnostic tests for liver disease.\",\"PeriodicalId\":12941,\"journal\":{\"name\":\"Health and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12553-023-00787-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12553-023-00787-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Selection of consistent breath biomarkers of abnormal liver function using feature selection: a pilot study
Abstract Purpose Breath profiling has gained importance in recent years as it is a non-invasive technique to identify biomarkers for various diseases. Breath profiling of abnormal liver function in individuals for identifying potential biomarkers in exhaled breath could be a useful diagnostic tool. The objective of this study was to identify potential biomarkers in exhaled breath that remain stable and consistent during different physiological states, including rest and brief workouts, intending to develop a non-invasive diagnostic tool for detecting abnormal liver function. Method Our study employed a gas chromatography and mass-spectrometer quantified dataset for analysis. Machine learning techniques, including feature selection and model training, were used to rank and evaluate potential biomarkers' contributions to the model's performance. Statistical methods were applied to filter significant and consistent biomarkers. The final selected biomarkers were iterated for all possible combinations using machine learning algorithms to determine their accuracy range. Furthermore, classification models were used to evaluate the performance metrics of the biomarkers and compare models. Result The final selected biomarkers, including 2-Myristynoyl Pantetheine, Pterin-6 Carboxylic Acid, Methyl Mercaptan, N-Acetyl Cysteine, and Butyric Acid, exhibited stable levels in exhaled breath during different physiological states. They showed high accuracy and precision in detecting abnormal liver function. Our machine learning models achieved an accuracy rate ranging from 0.7 to 0.95 in all conditions, with precision, recall, prediction probability, and a 95% confidence interval ranging from 0.84 to 0.94, using various combinations of these biomarkers. Conclusion Our statistical and machine learning analysis identified significant and potential biomarkers that contribute to the detection of abnormal liver function. These biomarkers were consistent across different physiological states of the body in both patient and healthy groups. The use of breath samples and feature selection machine learning methods proved to be an accurate and reliable approach for identifying these biomarkers. Our findings provide valuable insights for future research in this field and can inform the development of non-invasive and cost-effective diagnostic tests for liver disease.
期刊介绍:
Health and Technology is the first truly cross-disciplinary journal on issues related to health technologies addressing all professions relating to health, care and health technology.The journal constitutes an information platform connecting medical technology and informatics with the needs of care, health care professionals and patients. Thus, medical physicists and biomedical/clinical engineers are encouraged to write articles not only for their colleagues, but directed to all other groups of readers as well, and vice versa.By its nature, the journal presents and discusses hot subjects including but not limited to patient safety, patient empowerment, disease surveillance and management, e-health and issues concerning data security, privacy, reliability and management, data mining and knowledge exchange as well as health prevention. The journal also addresses the medical, financial, social, educational and safety aspects of health technologies as well as health technology assessment and management, including issues such security, efficacy, cost in comparison to the benefit, as well as social, legal and ethical implications.This journal is a communicative source for the health work force (physicians, nurses, medical physicists, clinical engineers, biomedical engineers, hospital engineers, etc.), the ministries of health, hospital management, self-employed doctors, health care providers and regulatory agencies, the medical technology industry, patients'' associations, universities (biomedical and clinical engineering, medical physics, medical informatics, biology, medicine and public health as well as health economics programs), research institutes and professional, scientific and technical organizations.Health and Technology is jointly published by Springer and the IUPESM (International Union for Physical and Engineering Sciences in Medicine) in cooperation with the World Health Organization.