Zhiquan Li, Kurt O. Konhauser, Yongzhang Zhou, Erin Adlakha, Mark Button, Cody Lazowski, Ernesto Pecoits, Natalie R. Aubet, Pilar Lecumberri-Sanchez, Daniel S. Alessi, Leslie J. Robbins
{"title":"风化如何影响古元古代带状铁地层的地球化学指标?西澳大利亚哈默斯利盆地2.46 Ga条带状铁组露头样品研究","authors":"Zhiquan Li, Kurt O. Konhauser, Yongzhang Zhou, Erin Adlakha, Mark Button, Cody Lazowski, Ernesto Pecoits, Natalie R. Aubet, Pilar Lecumberri-Sanchez, Daniel S. Alessi, Leslie J. Robbins","doi":"10.1130/b37152.1","DOIUrl":null,"url":null,"abstract":"Trace metal and rare earth element (REE) abundances in banded iron formations are critical for assessing the chemical composition of ancient seawater and the long-term evolution of the ocean-atmosphere system. Recent studies, however, have highlighted the potential effects of outcrop weathering, raising concerns about whether banded iron formation samples are suitable proxies for ancient redox conditions or if exposure to surficial weathering regimes may have altered key geochemical signals. Here, we present a detailed, high-resolution study of several banded iron formation outcrop samples from the Hamersley Basin, Western Australia, to investigate microscale differences in composition between banded iron formation and weathered surfaces (i.e., weathered crusts). Elemental mapping and bulk-rock geochemical analyses reveal that weathered crust is more enriched in most elements than the banded iron formation, except for silica, which is significantly depleted. There is also a significant loss of redox-sensitive elements (RSEs) in the weathered surface, which suggests that outcrop samples have been affected by higher degrees of chemical leaching than physical erosion. These results are significant, because we clearly show that the geochemical characteristics of the weathered surface—irrespective of how it formed—are distinct from those of the remainder of the sample. This means that with sufficient screening of samples for obvious signs of alteration, banded iron formation outcrop samples may indeed be used as a reliable proxy for the evolution of Earth’s coupled ocean-atmosphere system. This increases the volume of easily accessible Precambrian sample material, so that researchers no longer solely need to rely on core recovered through costly drilling programs.","PeriodicalId":55104,"journal":{"name":"Geological Society of America Bulletin","volume":"19 2","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How does weathering influence geochemical proxies in Paleoproterozoic banded iron formations? A case study from outcrop samples of 2.46 Ga banded iron formation, Hamersley Basin, Western Australia\",\"authors\":\"Zhiquan Li, Kurt O. Konhauser, Yongzhang Zhou, Erin Adlakha, Mark Button, Cody Lazowski, Ernesto Pecoits, Natalie R. Aubet, Pilar Lecumberri-Sanchez, Daniel S. Alessi, Leslie J. Robbins\",\"doi\":\"10.1130/b37152.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trace metal and rare earth element (REE) abundances in banded iron formations are critical for assessing the chemical composition of ancient seawater and the long-term evolution of the ocean-atmosphere system. Recent studies, however, have highlighted the potential effects of outcrop weathering, raising concerns about whether banded iron formation samples are suitable proxies for ancient redox conditions or if exposure to surficial weathering regimes may have altered key geochemical signals. Here, we present a detailed, high-resolution study of several banded iron formation outcrop samples from the Hamersley Basin, Western Australia, to investigate microscale differences in composition between banded iron formation and weathered surfaces (i.e., weathered crusts). Elemental mapping and bulk-rock geochemical analyses reveal that weathered crust is more enriched in most elements than the banded iron formation, except for silica, which is significantly depleted. There is also a significant loss of redox-sensitive elements (RSEs) in the weathered surface, which suggests that outcrop samples have been affected by higher degrees of chemical leaching than physical erosion. These results are significant, because we clearly show that the geochemical characteristics of the weathered surface—irrespective of how it formed—are distinct from those of the remainder of the sample. This means that with sufficient screening of samples for obvious signs of alteration, banded iron formation outcrop samples may indeed be used as a reliable proxy for the evolution of Earth’s coupled ocean-atmosphere system. This increases the volume of easily accessible Precambrian sample material, so that researchers no longer solely need to rely on core recovered through costly drilling programs.\",\"PeriodicalId\":55104,\"journal\":{\"name\":\"Geological Society of America Bulletin\",\"volume\":\"19 2\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Society of America Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/b37152.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Society of America Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/b37152.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
How does weathering influence geochemical proxies in Paleoproterozoic banded iron formations? A case study from outcrop samples of 2.46 Ga banded iron formation, Hamersley Basin, Western Australia
Trace metal and rare earth element (REE) abundances in banded iron formations are critical for assessing the chemical composition of ancient seawater and the long-term evolution of the ocean-atmosphere system. Recent studies, however, have highlighted the potential effects of outcrop weathering, raising concerns about whether banded iron formation samples are suitable proxies for ancient redox conditions or if exposure to surficial weathering regimes may have altered key geochemical signals. Here, we present a detailed, high-resolution study of several banded iron formation outcrop samples from the Hamersley Basin, Western Australia, to investigate microscale differences in composition between banded iron formation and weathered surfaces (i.e., weathered crusts). Elemental mapping and bulk-rock geochemical analyses reveal that weathered crust is more enriched in most elements than the banded iron formation, except for silica, which is significantly depleted. There is also a significant loss of redox-sensitive elements (RSEs) in the weathered surface, which suggests that outcrop samples have been affected by higher degrees of chemical leaching than physical erosion. These results are significant, because we clearly show that the geochemical characteristics of the weathered surface—irrespective of how it formed—are distinct from those of the remainder of the sample. This means that with sufficient screening of samples for obvious signs of alteration, banded iron formation outcrop samples may indeed be used as a reliable proxy for the evolution of Earth’s coupled ocean-atmosphere system. This increases the volume of easily accessible Precambrian sample material, so that researchers no longer solely need to rely on core recovered through costly drilling programs.
期刊介绍:
The GSA Bulletin is the Society''s premier scholarly journal, published continuously since 1890. Its first editor was William John (WJ) McGee, who was responsible for establishing much of its original style and format. Fully refereed, each bimonthly issue includes 16-20 papers focusing on the most definitive, timely, and classic-style research in all earth-science disciplines. The Bulletin welcomes most contributions that are data-rich, mature studies of broad interest (i.e., of interest to more than one sub-discipline of earth science) and of lasting, archival quality. These include (but are not limited to) studies related to tectonics, structural geology, geochemistry, geophysics, hydrogeology, marine geology, paleoclimatology, planetary geology, quaternary geology/geomorphology, sedimentary geology, stratigraphy, and volcanology. The journal is committed to further developing both the scope of its content and its international profile so that it publishes the most current earth science research that will be of wide interest to geoscientists.