超越超振荡:带限函数近似的一般理论

Tathagata Karmakar, Andrew N Jordan
{"title":"超越超振荡:带限函数近似的一般理论","authors":"Tathagata Karmakar, Andrew N Jordan","doi":"10.1088/1751-8121/ad09ec","DOIUrl":null,"url":null,"abstract":"Abstract We give a general strategy to construct superoscillating/growing functions using an orthogonal polynomial expansion of a bandlimited function. The degree of superoscillation/growth is controlled by an anomalous expectation value of a pseudodistribution that exceeds the band limit. The function is specified via the rest of its cumulants of the pseudodistribution. We give an explicit construction using Legendre polynomials in the Fourier space, which leads to an expansion in terms of spherical Bessel functions in the real space. The other expansion coefficients may be chosen to optimize other desirable features, such as the range of super behavior. We provide a prescription to generate bandlimited functions that mimic an arbitrary behavior in a finite interval. As target behaviors, we give examples of a superoscillating function, a supergrowing function, and even a discontinuous step function. We also look at the energy content in a superoscillating/supergrowing region and provide a bound that depends on the minimum value of the logarithmic derivative in that interval. Our work offers a new approach to analyzing superoscillations/supergrowth and is relevant to the optical field spot generation endeavors for far-field superresolution imaging.
","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Beyond superoscillation: general theory of approximation with bandlimited functions\",\"authors\":\"Tathagata Karmakar, Andrew N Jordan\",\"doi\":\"10.1088/1751-8121/ad09ec\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We give a general strategy to construct superoscillating/growing functions using an orthogonal polynomial expansion of a bandlimited function. The degree of superoscillation/growth is controlled by an anomalous expectation value of a pseudodistribution that exceeds the band limit. The function is specified via the rest of its cumulants of the pseudodistribution. We give an explicit construction using Legendre polynomials in the Fourier space, which leads to an expansion in terms of spherical Bessel functions in the real space. The other expansion coefficients may be chosen to optimize other desirable features, such as the range of super behavior. We provide a prescription to generate bandlimited functions that mimic an arbitrary behavior in a finite interval. As target behaviors, we give examples of a superoscillating function, a supergrowing function, and even a discontinuous step function. We also look at the energy content in a superoscillating/supergrowing region and provide a bound that depends on the minimum value of the logarithmic derivative in that interval. Our work offers a new approach to analyzing superoscillations/supergrowth and is relevant to the optical field spot generation endeavors for far-field superresolution imaging.
\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad09ec\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad09ec","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要给出了用带限函数的正交多项式展开构造超振荡/生长函数的一般策略。超振荡/增长的程度由超过带限的伪分布的异常期望值控制。该函数通过伪分布的其余累积量来指定。我们给出了傅里叶空间中使用勒让德多项式的显式构造,这导致了实空间中球形贝塞尔函数的展开。可以选择其他扩展系数来优化其他所需的特征,例如超行为的范围。我们提供了一个处方来生成在有限区间内模拟任意行为的带宽限制函数。作为目标行为,我们给出了超振荡函数、超生长函数,甚至不连续阶跃函数的例子。我们还研究了超振荡/超生长区域中的能量含量,并提供了一个依赖于该区间内对数导数的最小值的界。我们的工作提供了一种分析超振荡/超生长的新方法,并与远场超分辨率成像的光场光斑生成相关。& & #xD;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond superoscillation: general theory of approximation with bandlimited functions
Abstract We give a general strategy to construct superoscillating/growing functions using an orthogonal polynomial expansion of a bandlimited function. The degree of superoscillation/growth is controlled by an anomalous expectation value of a pseudodistribution that exceeds the band limit. The function is specified via the rest of its cumulants of the pseudodistribution. We give an explicit construction using Legendre polynomials in the Fourier space, which leads to an expansion in terms of spherical Bessel functions in the real space. The other expansion coefficients may be chosen to optimize other desirable features, such as the range of super behavior. We provide a prescription to generate bandlimited functions that mimic an arbitrary behavior in a finite interval. As target behaviors, we give examples of a superoscillating function, a supergrowing function, and even a discontinuous step function. We also look at the energy content in a superoscillating/supergrowing region and provide a bound that depends on the minimum value of the logarithmic derivative in that interval. Our work offers a new approach to analyzing superoscillations/supergrowth and is relevant to the optical field spot generation endeavors for far-field superresolution imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信