{"title":"波多黎各年、季、日降雨气候学的时空变化研究","authors":"José Javier Hernández Ayala, Rafael Méndez Tejeda","doi":"10.3390/cli11110225","DOIUrl":null,"url":null,"abstract":"This study explores spatial and temporal changes in the rainfall climatology of Puerto Rico in order to identify areas where annual, seasonal or daily precipitation is increasing, decreasing, or remaining normal. Total annual, seasonal, and daily rainfall were retrieved from 23 historical rain gauges with consistent data for the 1956–2021 period. Mann–Kendall trend tests were done on the annual and seasonal rainfall series, and percentage change differences between two different climatologies (1956–1987 and 1988–2021) were calculated. Most of the stations did not exhibit statistically significant annual or seasonal trends in average rainfall. However, of the sites that did experience changes, most of them had statistically significant decreasing trends in mean precipitation. The annual, dry, and early wet season had more sites with negative trends when compared with positive trends, especially in the northwestern and southeastern region of the island. The late wet season was the only period with more sites showing statistically significant trends when compared with negative trends, specifically in the northern region of the island. Results for daily events show that extreme rainfall occurrences have generally decreased, especially in the western region of the island. When the 1955–1987 and 1988–2022 climatologies are compared, the results for annual average rainfall show two main regions with mean precipitation reductions, and those are the northwestern and southeastern areas of the island. The dry season was the only period with more areas exhibiting percentage increases in mean rainfall when the two climatologies were analyzed. The early and late wet season months exhibited similar patterns, with more areas on the island showing negative percentage decreases in average seasonal precipitation. The best predictor for the decreasing annual and seasonal trend in the northwest was a higher sea level pressure, and the variable that best explained the increasing trend in the northeast was total precipitable water.","PeriodicalId":37615,"journal":{"name":"Climate","volume":"8 12","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the Spatiotemporal Changes in the Annual, Seasonal, and Daily Rainfall Climatology of Puerto Rico\",\"authors\":\"José Javier Hernández Ayala, Rafael Méndez Tejeda\",\"doi\":\"10.3390/cli11110225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores spatial and temporal changes in the rainfall climatology of Puerto Rico in order to identify areas where annual, seasonal or daily precipitation is increasing, decreasing, or remaining normal. Total annual, seasonal, and daily rainfall were retrieved from 23 historical rain gauges with consistent data for the 1956–2021 period. Mann–Kendall trend tests were done on the annual and seasonal rainfall series, and percentage change differences between two different climatologies (1956–1987 and 1988–2021) were calculated. Most of the stations did not exhibit statistically significant annual or seasonal trends in average rainfall. However, of the sites that did experience changes, most of them had statistically significant decreasing trends in mean precipitation. The annual, dry, and early wet season had more sites with negative trends when compared with positive trends, especially in the northwestern and southeastern region of the island. The late wet season was the only period with more sites showing statistically significant trends when compared with negative trends, specifically in the northern region of the island. Results for daily events show that extreme rainfall occurrences have generally decreased, especially in the western region of the island. When the 1955–1987 and 1988–2022 climatologies are compared, the results for annual average rainfall show two main regions with mean precipitation reductions, and those are the northwestern and southeastern areas of the island. The dry season was the only period with more areas exhibiting percentage increases in mean rainfall when the two climatologies were analyzed. The early and late wet season months exhibited similar patterns, with more areas on the island showing negative percentage decreases in average seasonal precipitation. The best predictor for the decreasing annual and seasonal trend in the northwest was a higher sea level pressure, and the variable that best explained the increasing trend in the northeast was total precipitable water.\",\"PeriodicalId\":37615,\"journal\":{\"name\":\"Climate\",\"volume\":\"8 12\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli11110225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli11110225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Examining the Spatiotemporal Changes in the Annual, Seasonal, and Daily Rainfall Climatology of Puerto Rico
This study explores spatial and temporal changes in the rainfall climatology of Puerto Rico in order to identify areas where annual, seasonal or daily precipitation is increasing, decreasing, or remaining normal. Total annual, seasonal, and daily rainfall were retrieved from 23 historical rain gauges with consistent data for the 1956–2021 period. Mann–Kendall trend tests were done on the annual and seasonal rainfall series, and percentage change differences between two different climatologies (1956–1987 and 1988–2021) were calculated. Most of the stations did not exhibit statistically significant annual or seasonal trends in average rainfall. However, of the sites that did experience changes, most of them had statistically significant decreasing trends in mean precipitation. The annual, dry, and early wet season had more sites with negative trends when compared with positive trends, especially in the northwestern and southeastern region of the island. The late wet season was the only period with more sites showing statistically significant trends when compared with negative trends, specifically in the northern region of the island. Results for daily events show that extreme rainfall occurrences have generally decreased, especially in the western region of the island. When the 1955–1987 and 1988–2022 climatologies are compared, the results for annual average rainfall show two main regions with mean precipitation reductions, and those are the northwestern and southeastern areas of the island. The dry season was the only period with more areas exhibiting percentage increases in mean rainfall when the two climatologies were analyzed. The early and late wet season months exhibited similar patterns, with more areas on the island showing negative percentage decreases in average seasonal precipitation. The best predictor for the decreasing annual and seasonal trend in the northwest was a higher sea level pressure, and the variable that best explained the increasing trend in the northeast was total precipitable water.
ClimateEarth and Planetary Sciences-Atmospheric Science
CiteScore
5.50
自引率
5.40%
发文量
172
审稿时长
11 weeks
期刊介绍:
Climate is an independent, international and multi-disciplinary open access journal focusing on climate processes of the earth, covering all scales and involving modelling and observation methods. The scope of Climate includes: Global climate Regional climate Urban climate Multiscale climate Polar climate Tropical climate Climate downscaling Climate process and sensitivity studies Climate dynamics Climate variability (Interseasonal, interannual to decadal) Feedbacks between local, regional, and global climate change Anthropogenic climate change Climate and monsoon Cloud and precipitation predictions Past, present, and projected climate change Hydroclimate.