快速、裸眼、高选择性、高灵敏度希夫碱荧光探针的制备及应用

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Juan Liu, Peng-Yu Cheng, Sai Chen, Meng Wang, Kai Wei, Yuan Li, Yao-Yao Cao, Xing Wang, Hong-Lei Li
{"title":"快速、裸眼、高选择性、高灵敏度希夫碱荧光探针的制备及应用","authors":"Juan Liu, Peng-Yu Cheng, Sai Chen, Meng Wang, Kai Wei, Yuan Li, Yao-Yao Cao, Xing Wang, Hong-Lei Li","doi":"10.3390/chemosensors11110556","DOIUrl":null,"url":null,"abstract":"A fluorescent probe, N′-((3-methyl-5-oxo-1-phenyl-4, 5-dihydro-1H-pyrazol-4-yl) methylene)-2-oxo-2H-chromene-3-carbohydrazide (MPMC), was synthesized and characterized. Characterizations of the synthetic MPMC were conducted via proton nuclear magnetic resonance (1HNMR) spectroscopy and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The fluorescence emission behaviors of the MPMC probe towards diverse metal ions were detected, and the probe exhibited high sensitivity and selectivity towards Cu2+ over other metal ions via the quenching of its fluorescence. Furthermore, the existence of other metal actions made no apparent difference to the fluorescence intensity of the MPMC-Cu2+ system; that is, MPMC displayed a good anti-interference ability. Job’s plot of the MPMC and copper ions indicated that the detection limit was 10.23 nM (R2 = 0.9612) for the assayed actions, with a stoichiometric ratio of 1:1 for MPMC and Cu2+. Additionally, the color of the MPMC probe solution changed from nearly colorless to yellow in the presence of Cu2+ in visible light, and the color change could be observed by the naked eye. Similarly, the color resolved from bright yellow into blue in ultraviolet light. Moreover, reusability studies indicated that the MPMC probe was reusable. The pH effect of the MPMC probe on Cu2+ had a broad range of pH detection, i.e., from 4.0 to 11.0. The response time of the MPMC probe for determining Cu2+ was within 1 min. The recognition of Cu2+ via MPMC performed on pre-treated paper under sunlight and UV light both had a distinct colour change. Thus, the solid-state method for detecting Cu2+ with the naked eye was both economical and convenient.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Application of a Fast, Naked-Eye, Highly Selective, and Highly Sensitive Fluorescent Probe of Schiff Base for Detection of Cu2+\",\"authors\":\"Juan Liu, Peng-Yu Cheng, Sai Chen, Meng Wang, Kai Wei, Yuan Li, Yao-Yao Cao, Xing Wang, Hong-Lei Li\",\"doi\":\"10.3390/chemosensors11110556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fluorescent probe, N′-((3-methyl-5-oxo-1-phenyl-4, 5-dihydro-1H-pyrazol-4-yl) methylene)-2-oxo-2H-chromene-3-carbohydrazide (MPMC), was synthesized and characterized. Characterizations of the synthetic MPMC were conducted via proton nuclear magnetic resonance (1HNMR) spectroscopy and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The fluorescence emission behaviors of the MPMC probe towards diverse metal ions were detected, and the probe exhibited high sensitivity and selectivity towards Cu2+ over other metal ions via the quenching of its fluorescence. Furthermore, the existence of other metal actions made no apparent difference to the fluorescence intensity of the MPMC-Cu2+ system; that is, MPMC displayed a good anti-interference ability. Job’s plot of the MPMC and copper ions indicated that the detection limit was 10.23 nM (R2 = 0.9612) for the assayed actions, with a stoichiometric ratio of 1:1 for MPMC and Cu2+. Additionally, the color of the MPMC probe solution changed from nearly colorless to yellow in the presence of Cu2+ in visible light, and the color change could be observed by the naked eye. Similarly, the color resolved from bright yellow into blue in ultraviolet light. Moreover, reusability studies indicated that the MPMC probe was reusable. The pH effect of the MPMC probe on Cu2+ had a broad range of pH detection, i.e., from 4.0 to 11.0. The response time of the MPMC probe for determining Cu2+ was within 1 min. The recognition of Cu2+ via MPMC performed on pre-treated paper under sunlight and UV light both had a distinct colour change. Thus, the solid-state method for detecting Cu2+ with the naked eye was both economical and convenient.\",\"PeriodicalId\":10057,\"journal\":{\"name\":\"Chemosensors\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemosensors11110556\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemosensors11110556","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

合成了荧光探针N ' -((3-甲基-5-氧-1-苯基- 4,5 -二氢- 1h -吡唑-4-基)亚甲基)-2-氧- 2h -铬-3-碳肼(MPMC)并对其进行了表征。通过质子核磁共振(1HNMR)和碳-13核磁共振(13C NMR)对合成的MPMC进行了表征。检测了MPMC探针对不同金属离子的荧光发射行为,发现该探针通过荧光猝灭对Cu2+表现出较高的灵敏度和选择性。此外,其他金属作用的存在对MPMC-Cu2+体系的荧光强度没有明显影响;即MPMC具有良好的抗干扰能力。MPMC与Cu2+的Job’s图显示,检测限为10.23 nM (R2 = 0.9612),化学计量比为1:1。此外,在Cu2+存在下,MPMC探针溶液的颜色在可见光下由近乎无色变为黄色,并且可以用肉眼观察到这种颜色变化。同样,在紫外线下,颜色也从亮黄色分解成蓝色。此外,可重复使用性研究表明,MPMC探针是可重复使用的。MPMC探针对Cu2+的pH效应具有较宽的pH检测范围,即从4.0到11.0。MPMC探针测定Cu2+的响应时间在1 min以内。在日光和紫外光下,MPMC对预处理纸的Cu2+的识别都有明显的颜色变化。因此,用肉眼检测Cu2+的固态方法既经济又方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and Application of a Fast, Naked-Eye, Highly Selective, and Highly Sensitive Fluorescent Probe of Schiff Base for Detection of Cu2+
A fluorescent probe, N′-((3-methyl-5-oxo-1-phenyl-4, 5-dihydro-1H-pyrazol-4-yl) methylene)-2-oxo-2H-chromene-3-carbohydrazide (MPMC), was synthesized and characterized. Characterizations of the synthetic MPMC were conducted via proton nuclear magnetic resonance (1HNMR) spectroscopy and carbon-13 nuclear magnetic resonance spectroscopy (13C NMR). The fluorescence emission behaviors of the MPMC probe towards diverse metal ions were detected, and the probe exhibited high sensitivity and selectivity towards Cu2+ over other metal ions via the quenching of its fluorescence. Furthermore, the existence of other metal actions made no apparent difference to the fluorescence intensity of the MPMC-Cu2+ system; that is, MPMC displayed a good anti-interference ability. Job’s plot of the MPMC and copper ions indicated that the detection limit was 10.23 nM (R2 = 0.9612) for the assayed actions, with a stoichiometric ratio of 1:1 for MPMC and Cu2+. Additionally, the color of the MPMC probe solution changed from nearly colorless to yellow in the presence of Cu2+ in visible light, and the color change could be observed by the naked eye. Similarly, the color resolved from bright yellow into blue in ultraviolet light. Moreover, reusability studies indicated that the MPMC probe was reusable. The pH effect of the MPMC probe on Cu2+ had a broad range of pH detection, i.e., from 4.0 to 11.0. The response time of the MPMC probe for determining Cu2+ was within 1 min. The recognition of Cu2+ via MPMC performed on pre-treated paper under sunlight and UV light both had a distinct colour change. Thus, the solid-state method for detecting Cu2+ with the naked eye was both economical and convenient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信