David Nocar, George Grossman, Jiří Vaško, Tomáš Zdráhal
{"title":"Wolfram Mathematica计算结果在三角求和中的准确性","authors":"David Nocar, George Grossman, Jiří Vaško, Tomáš Zdráhal","doi":"10.3390/computation11110222","DOIUrl":null,"url":null,"abstract":"This article explores the accessibility of symbolic computations, such as using the Wolfram Mathematica environment, in promoting the shift from informal experimentation to formal mathematical justifications. We investigate the accuracy of computational results from mathematical software in the context of a certain summation in trigonometry. In particular, the key issue addressed here is the calculated sum ∑n=044tan1+4n°. This paper utilizes Wolfram Mathematica to handle the irrational numbers in the sum more accurately, which it achieves by representing them symbolically rather than using numerical approximations. Can we rely on the calculated result from Wolfram, especially if almost all the addends are irrational, or must the students eventually prove it mathematically? It is clear that the problem can be solved using software; however, the nature of the result raises questions about its correctness, and this inherent informality can encourage a few students to seek viable mathematical proofs. In this way, a balance is reached between formal and informal mathematics.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"7 11","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Accuracy of Computational Results from Wolfram Mathematica in the Context of Summation in Trigonometry\",\"authors\":\"David Nocar, George Grossman, Jiří Vaško, Tomáš Zdráhal\",\"doi\":\"10.3390/computation11110222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores the accessibility of symbolic computations, such as using the Wolfram Mathematica environment, in promoting the shift from informal experimentation to formal mathematical justifications. We investigate the accuracy of computational results from mathematical software in the context of a certain summation in trigonometry. In particular, the key issue addressed here is the calculated sum ∑n=044tan1+4n°. This paper utilizes Wolfram Mathematica to handle the irrational numbers in the sum more accurately, which it achieves by representing them symbolically rather than using numerical approximations. Can we rely on the calculated result from Wolfram, especially if almost all the addends are irrational, or must the students eventually prove it mathematically? It is clear that the problem can be solved using software; however, the nature of the result raises questions about its correctness, and this inherent informality can encourage a few students to seek viable mathematical proofs. In this way, a balance is reached between formal and informal mathematics.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"7 11\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11110222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11110222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The Accuracy of Computational Results from Wolfram Mathematica in the Context of Summation in Trigonometry
This article explores the accessibility of symbolic computations, such as using the Wolfram Mathematica environment, in promoting the shift from informal experimentation to formal mathematical justifications. We investigate the accuracy of computational results from mathematical software in the context of a certain summation in trigonometry. In particular, the key issue addressed here is the calculated sum ∑n=044tan1+4n°. This paper utilizes Wolfram Mathematica to handle the irrational numbers in the sum more accurately, which it achieves by representing them symbolically rather than using numerical approximations. Can we rely on the calculated result from Wolfram, especially if almost all the addends are irrational, or must the students eventually prove it mathematically? It is clear that the problem can be solved using software; however, the nature of the result raises questions about its correctness, and this inherent informality can encourage a few students to seek viable mathematical proofs. In this way, a balance is reached between formal and informal mathematics.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.