单淘汰赛和进化树之间的数学联系

Q4 Mathematics
Matthew C. King, Noah A. Rosenberg
{"title":"单淘汰赛和进化树之间的数学联系","authors":"Matthew C. King, Noah A. Rosenberg","doi":"10.1080/0025570x.2023.2266389","DOIUrl":null,"url":null,"abstract":"How many ways are there to arrange the sequence of games in a single-elimination sports tournament? We consider the connection between this enumeration problem and the enumeration of “labeled histories,” or sequences of asynchronous branching events, in mathematical phylogenetics. The possibility of playing multiple games simultaneously in different arenas suggests an extension of the enumeration of labeled histories to scenarios in which multiple branching events occur simultaneously. We provide a recursive result enumerating game sequences and labeled histories in which simultaneity is allowed. For a March Madness basketball tournament of 68 labeled teams, the number of possible sequences of games is ∼1.91×1078 if arbitrarily many arenas are available, but only ∼3.60×1068 if all games must be played sequentially in the same arena.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mathematical Connection Between Single-Elimination Sports Tournaments and Evolutionary Trees\",\"authors\":\"Matthew C. King, Noah A. Rosenberg\",\"doi\":\"10.1080/0025570x.2023.2266389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How many ways are there to arrange the sequence of games in a single-elimination sports tournament? We consider the connection between this enumeration problem and the enumeration of “labeled histories,” or sequences of asynchronous branching events, in mathematical phylogenetics. The possibility of playing multiple games simultaneously in different arenas suggests an extension of the enumeration of labeled histories to scenarios in which multiple branching events occur simultaneously. We provide a recursive result enumerating game sequences and labeled histories in which simultaneity is allowed. For a March Madness basketball tournament of 68 labeled teams, the number of possible sequences of games is ∼1.91×1078 if arbitrarily many arenas are available, but only ∼3.60×1068 if all games must be played sequentially in the same arena.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570x.2023.2266389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570x.2023.2266389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在单淘汰赛中,有多少种方式来安排比赛顺序?我们考虑这种枚举问题与数学系统发育中“标记历史”或异步分支事件序列的枚举之间的联系。在不同的舞台上同时玩多个游戏的可能性意味着将标记历史的枚举扩展到多个分支事件同时发生的场景。我们提供了一个递归的结果,列举了游戏序列和标记历史,其中同时性是允许的。对于有68支球队参加的“疯狂三月”篮球锦标赛,如果有任意多场比赛,可能的比赛顺序数为~ 1.91×1078,但如果所有比赛必须在同一场比赛中顺序进行,则只有~ 3.60×1068。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mathematical Connection Between Single-Elimination Sports Tournaments and Evolutionary Trees
How many ways are there to arrange the sequence of games in a single-elimination sports tournament? We consider the connection between this enumeration problem and the enumeration of “labeled histories,” or sequences of asynchronous branching events, in mathematical phylogenetics. The possibility of playing multiple games simultaneously in different arenas suggests an extension of the enumeration of labeled histories to scenarios in which multiple branching events occur simultaneously. We provide a recursive result enumerating game sequences and labeled histories in which simultaneity is allowed. For a March Madness basketball tournament of 68 labeled teams, the number of possible sequences of games is ∼1.91×1078 if arbitrarily many arenas are available, but only ∼3.60×1068 if all games must be played sequentially in the same arena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信