{"title":"ANSYS研究太阳能光伏温度分布,提高效率","authors":"Paul Rousseau, Hassan Nouri","doi":"10.11591/ijaas.v12.i3.pp293-300","DOIUrl":null,"url":null,"abstract":"<p>A computational analysis of the influence of varying solar module material properties on operating temperature is presented and related to electrical conversion efficiency through the devised method. By varying the properties of density, specific heat capacity, and isotropic thermal conductivity for each material that comprises a solar module, density, and specific heat capacity were found to have the greatest influence on decreasing the operating temperature when increased by a factor of 50% for the glass layer, resulting in a decrease in temperature of 5.33 °C. Utilizing the devised method, which is based on the work of Palumbo, this temperature decrease was correlated to an electrical efficiency increase of 3.08%.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANSYS investigation of solar photovoltaic temperature distribution for improved efficiency\",\"authors\":\"Paul Rousseau, Hassan Nouri\",\"doi\":\"10.11591/ijaas.v12.i3.pp293-300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A computational analysis of the influence of varying solar module material properties on operating temperature is presented and related to electrical conversion efficiency through the devised method. By varying the properties of density, specific heat capacity, and isotropic thermal conductivity for each material that comprises a solar module, density, and specific heat capacity were found to have the greatest influence on decreasing the operating temperature when increased by a factor of 50% for the glass layer, resulting in a decrease in temperature of 5.33 °C. Utilizing the devised method, which is based on the work of Palumbo, this temperature decrease was correlated to an electrical efficiency increase of 3.08%.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijaas.v12.i3.pp293-300\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v12.i3.pp293-300","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
ANSYS investigation of solar photovoltaic temperature distribution for improved efficiency
A computational analysis of the influence of varying solar module material properties on operating temperature is presented and related to electrical conversion efficiency through the devised method. By varying the properties of density, specific heat capacity, and isotropic thermal conductivity for each material that comprises a solar module, density, and specific heat capacity were found to have the greatest influence on decreasing the operating temperature when increased by a factor of 50% for the glass layer, resulting in a decrease in temperature of 5.33 °C. Utilizing the devised method, which is based on the work of Palumbo, this temperature decrease was correlated to an electrical efficiency increase of 3.08%.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.