{"title":"存储型非均匀介质中二维地震波传播速度确定问题的数值解","authors":"Marat Tomaev, Zhanna Totieva","doi":"10.2205/2023es000866","DOIUrl":null,"url":null,"abstract":"The numerical method for two-dimensional inverse dynamic seismic problem for a viscoelastic isotropic medium is presented. The system of differential equations of elasticity for isotropic medium of memory type is considered as a mathematical model. The unknown values are the displacement, the memory function of the medium (the kernel of the integral term) and the propagation velocity of elastic waves in a weakly horizontally inhomogeneous medium. Additional information for the inverse problem is the response displacement measured on the surface. The method is based on reducing the inverse problem to a system of Volterra-type integral equations and their sequential numerical implementation. The results of the study are analyzed and compared with the analytical solution. It is shown that the results are in satisfactory agreement.","PeriodicalId":44680,"journal":{"name":"Russian Journal of Earth Sciences","volume":"74 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of a Two-Dimensional Problem of Determining the Propagation Velocity of Seismic Waves in Inhomogeneous Medium of Memory Type\",\"authors\":\"Marat Tomaev, Zhanna Totieva\",\"doi\":\"10.2205/2023es000866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical method for two-dimensional inverse dynamic seismic problem for a viscoelastic isotropic medium is presented. The system of differential equations of elasticity for isotropic medium of memory type is considered as a mathematical model. The unknown values are the displacement, the memory function of the medium (the kernel of the integral term) and the propagation velocity of elastic waves in a weakly horizontally inhomogeneous medium. Additional information for the inverse problem is the response displacement measured on the surface. The method is based on reducing the inverse problem to a system of Volterra-type integral equations and their sequential numerical implementation. The results of the study are analyzed and compared with the analytical solution. It is shown that the results are in satisfactory agreement.\",\"PeriodicalId\":44680,\"journal\":{\"name\":\"Russian Journal of Earth Sciences\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2205/2023es000866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2205/2023es000866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical Solution of a Two-Dimensional Problem of Determining the Propagation Velocity of Seismic Waves in Inhomogeneous Medium of Memory Type
The numerical method for two-dimensional inverse dynamic seismic problem for a viscoelastic isotropic medium is presented. The system of differential equations of elasticity for isotropic medium of memory type is considered as a mathematical model. The unknown values are the displacement, the memory function of the medium (the kernel of the integral term) and the propagation velocity of elastic waves in a weakly horizontally inhomogeneous medium. Additional information for the inverse problem is the response displacement measured on the surface. The method is based on reducing the inverse problem to a system of Volterra-type integral equations and their sequential numerical implementation. The results of the study are analyzed and compared with the analytical solution. It is shown that the results are in satisfactory agreement.