MQL连续分散输送系统的网格独立性分析研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zulaika Zulkifli, None N.H. Abdul Halim, None Z.H. Solihin, None J. Saedon, None A.A. Ahmad, None A.H. Abdullah, None N. Abdul Raof, None M. Abdul Hadi
{"title":"MQL连续分散输送系统的网格独立性分析研究","authors":"Zulaika Zulkifli, None N.H. Abdul Halim, None Z.H. Solihin, None J. Saedon, None A.A. Ahmad, None A.H. Abdullah, None N. Abdul Raof, None M. Abdul Hadi","doi":"10.15282/jmes.17.3.2023.5.0759","DOIUrl":null,"url":null,"abstract":"A sustainable cutting method of Minimum Quantity Lubricant (MQL) was introduced to promote lubrication effect and improve machinability. However, its performances are very dependent on the effectiveness of its mist to penetrate deep into the cutting zone. Optimizing the MQL system requires massive experimental work that increases cost and time. Therefore, this study conducts Computational Fluid Dynamic (CFD) analysis using ANSYS Fluent and focuses on the grid independence study in dispersed-continuous phase of MQL delivery system. The main aim is to identify the best mesh model that influences the accuracy of the CFD model. The analysis proposed two different unstructured grid cell elements of quadrilateral and triangular that were only applicable for 2-dimensional fluid flow in CFD. The unstructured grid was controlled with three different mesh quality factors such as Relevance Center, Smoothing, and Span Angle Center at coarse /low, medium, and fine /high. The results showed that the best mesh quality for quadrilateral was at 60,000 nodes number and coarse mesh, whereas the triangular was at 90,000 nodes number and coarse mesh. Both combinations resulted the most consistent and reliable result when compared with past studies. However, this study decided to choose quadrilateral cell element with 60,000 nodes number and coarse mesh as it is considered to be sufficient to provide accurate and reliable result as well as practical in terms of computational time for the MQL model in CFD analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The analysis of grid independence study in continuous disperse of MQL delivery system\",\"authors\":\"Zulaika Zulkifli, None N.H. Abdul Halim, None Z.H. Solihin, None J. Saedon, None A.A. Ahmad, None A.H. Abdullah, None N. Abdul Raof, None M. Abdul Hadi\",\"doi\":\"10.15282/jmes.17.3.2023.5.0759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sustainable cutting method of Minimum Quantity Lubricant (MQL) was introduced to promote lubrication effect and improve machinability. However, its performances are very dependent on the effectiveness of its mist to penetrate deep into the cutting zone. Optimizing the MQL system requires massive experimental work that increases cost and time. Therefore, this study conducts Computational Fluid Dynamic (CFD) analysis using ANSYS Fluent and focuses on the grid independence study in dispersed-continuous phase of MQL delivery system. The main aim is to identify the best mesh model that influences the accuracy of the CFD model. The analysis proposed two different unstructured grid cell elements of quadrilateral and triangular that were only applicable for 2-dimensional fluid flow in CFD. The unstructured grid was controlled with three different mesh quality factors such as Relevance Center, Smoothing, and Span Angle Center at coarse /low, medium, and fine /high. The results showed that the best mesh quality for quadrilateral was at 60,000 nodes number and coarse mesh, whereas the triangular was at 90,000 nodes number and coarse mesh. Both combinations resulted the most consistent and reliable result when compared with past studies. However, this study decided to choose quadrilateral cell element with 60,000 nodes number and coarse mesh as it is considered to be sufficient to provide accurate and reliable result as well as practical in terms of computational time for the MQL model in CFD analysis.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.17.3.2023.5.0759\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.3.2023.5.0759","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高润滑效果和可加工性,提出了一种最小润滑量可持续切削方法。然而,它的性能很大程度上取决于它的雾渗透到切割区深处的有效性。优化MQL系统需要大量的实验工作,增加了成本和时间。因此,本研究利用ANSYS Fluent进行计算流体动力学(CFD)分析,重点研究MQL输送系统分散-连续相位的网格独立性。其主要目的是确定影响CFD模型精度的最佳网格模型。分析提出了仅适用于CFD中二维流体流动的四边形和三角形两种不同的非结构化网格单元单元。在粗/低、中、精/高三种不同的网格质量因子下,采用相关度中心、平滑度中心和跨度角中心对非结构化网格进行控制。结果表明,四边形网格质量最好的是6万节点数和粗网格,三角形网格质量最好的是9万节点数和粗网格。与过去的研究相比,这两种组合都产生了最一致和可靠的结果。但考虑到MQL模型在CFD分析中的计算时间较短,且结果准确可靠,因此本研究决定选择6万个节点数的四边形单元单元,采用粗网格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The analysis of grid independence study in continuous disperse of MQL delivery system
A sustainable cutting method of Minimum Quantity Lubricant (MQL) was introduced to promote lubrication effect and improve machinability. However, its performances are very dependent on the effectiveness of its mist to penetrate deep into the cutting zone. Optimizing the MQL system requires massive experimental work that increases cost and time. Therefore, this study conducts Computational Fluid Dynamic (CFD) analysis using ANSYS Fluent and focuses on the grid independence study in dispersed-continuous phase of MQL delivery system. The main aim is to identify the best mesh model that influences the accuracy of the CFD model. The analysis proposed two different unstructured grid cell elements of quadrilateral and triangular that were only applicable for 2-dimensional fluid flow in CFD. The unstructured grid was controlled with three different mesh quality factors such as Relevance Center, Smoothing, and Span Angle Center at coarse /low, medium, and fine /high. The results showed that the best mesh quality for quadrilateral was at 60,000 nodes number and coarse mesh, whereas the triangular was at 90,000 nodes number and coarse mesh. Both combinations resulted the most consistent and reliable result when compared with past studies. However, this study decided to choose quadrilateral cell element with 60,000 nodes number and coarse mesh as it is considered to be sufficient to provide accurate and reliable result as well as practical in terms of computational time for the MQL model in CFD analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信