Fernando Pizzo Ribeiro, Egon Galembeck, Rodrigo A. de Lima Moreto, Salvador Pinillos Gimenez
{"title":"利用FISH mosfet作为构造元件产生纵向光电流的太阳能电池研究","authors":"Fernando Pizzo Ribeiro, Egon Galembeck, Rodrigo A. de Lima Moreto, Salvador Pinillos Gimenez","doi":"10.29292/jics.v18i2.616","DOIUrl":null,"url":null,"abstract":"According to a study by the International Energy Agency (IEA), solar energy could reach 30% in 2023 in countries with the most excellent installed generation capacity, such as China, Germany, Japan, and the United States of America. In other countries, like Brazil (mainly in Paraiba state), for instance, the volume of investments in the solar energy sector is equal to 4.17 billion Reais of private investments in 2022 to implement a photovoltaic module factory to reach an installed capacity of 1.6GW. In this context, several efforts have been made to boost the electrical performance of solar cells in terms of using new materials, fabrication processes, and constructive essential elements to produce electric energy with more efficiency. Thus, this paper performs, by three-dimensional numerical simulations, a comparative study between solar cells implemented with constructive elements based on Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), N channel, depletion type, with two types of gate geometries, in which one is layouted with the typical rectangular (Rectangular MOSFET, RM) and other is implemented with the FISH layout style (FISH MOSFET, FM). The main results have shown that the solar cell implemented with the FISH MOSFET has an efficiency of approximately 57% higher than that presented in the solar cell implemented with the Conventional MOSFET. Therefore, the solar cells implemented with FISH MOSFETs can be considered an alternative constructive essential element to improve the electrical performance of solar cells.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Solar Cells Using FISH MOSFETs as a Constructive Element to Generate Photocurrent in the Longitudinal Direction\",\"authors\":\"Fernando Pizzo Ribeiro, Egon Galembeck, Rodrigo A. de Lima Moreto, Salvador Pinillos Gimenez\",\"doi\":\"10.29292/jics.v18i2.616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to a study by the International Energy Agency (IEA), solar energy could reach 30% in 2023 in countries with the most excellent installed generation capacity, such as China, Germany, Japan, and the United States of America. In other countries, like Brazil (mainly in Paraiba state), for instance, the volume of investments in the solar energy sector is equal to 4.17 billion Reais of private investments in 2022 to implement a photovoltaic module factory to reach an installed capacity of 1.6GW. In this context, several efforts have been made to boost the electrical performance of solar cells in terms of using new materials, fabrication processes, and constructive essential elements to produce electric energy with more efficiency. Thus, this paper performs, by three-dimensional numerical simulations, a comparative study between solar cells implemented with constructive elements based on Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), N channel, depletion type, with two types of gate geometries, in which one is layouted with the typical rectangular (Rectangular MOSFET, RM) and other is implemented with the FISH layout style (FISH MOSFET, FM). The main results have shown that the solar cell implemented with the FISH MOSFET has an efficiency of approximately 57% higher than that presented in the solar cell implemented with the Conventional MOSFET. Therefore, the solar cells implemented with FISH MOSFETs can be considered an alternative constructive essential element to improve the electrical performance of solar cells.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v18i2.616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v18i2.616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Study of Solar Cells Using FISH MOSFETs as a Constructive Element to Generate Photocurrent in the Longitudinal Direction
According to a study by the International Energy Agency (IEA), solar energy could reach 30% in 2023 in countries with the most excellent installed generation capacity, such as China, Germany, Japan, and the United States of America. In other countries, like Brazil (mainly in Paraiba state), for instance, the volume of investments in the solar energy sector is equal to 4.17 billion Reais of private investments in 2022 to implement a photovoltaic module factory to reach an installed capacity of 1.6GW. In this context, several efforts have been made to boost the electrical performance of solar cells in terms of using new materials, fabrication processes, and constructive essential elements to produce electric energy with more efficiency. Thus, this paper performs, by three-dimensional numerical simulations, a comparative study between solar cells implemented with constructive elements based on Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), N channel, depletion type, with two types of gate geometries, in which one is layouted with the typical rectangular (Rectangular MOSFET, RM) and other is implemented with the FISH layout style (FISH MOSFET, FM). The main results have shown that the solar cell implemented with the FISH MOSFET has an efficiency of approximately 57% higher than that presented in the solar cell implemented with the Conventional MOSFET. Therefore, the solar cells implemented with FISH MOSFETs can be considered an alternative constructive essential element to improve the electrical performance of solar cells.
期刊介绍:
This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.