阿塔科伊观测井的现场响应估计值

Yusuf GUZEL, Fidan GÜZEL
{"title":"阿塔科伊观测井的现场响应估计值","authors":"Yusuf GUZEL, Fidan GÜZEL","doi":"10.21205/deufmd.2023257517","DOIUrl":null,"url":null,"abstract":"Site response analyses are seen to be the reliable way of reproducing and predicting earthquake input motions. The analyses are generally performed by adopting equivalent linear or nonlinear approaches solving the problem in time or frequency domains. Instrumented geotechnical downhole arrays, in this regard, are very important as to obtaining earthquake data through the soil deposits. This data can eventually be used to verify the approaches developed for site response analyses. In this study, the input motions of the 24.05.2014 (Aegean) earthquake event recorded at relatively recently installed Atakoy geotechnical downhole array are assessed. Moreover, the recorded input motions at the bottom bedrock level of the downhole array are simulated in the East-West and North-South directions. The site response analyses are conducted based on frequency domain equivalent linear approach. The peak ground acceleration and the spectral accelerations of the predicted input motions are compared with the recorded ones at 70 m, 50 m, 25 m and at the ground surface. The results indicate that the spectral acceleration predictions can be simulated well until the depth of 50 m. At 25 m and at ground surface, the predictions are always greater than the recorded one. However, the predictions still exhibits good indication of actual values in the North-South direction. In terms of peak ground acceleration and shear strain profiles, the predictions display the soil layers featured with different soil properties. The equivalent linear approach appears to be suited reasonably well in site response analysis.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ataköy Gözlem Kuyusunda Saha Tepki Tahminleri\",\"authors\":\"Yusuf GUZEL, Fidan GÜZEL\",\"doi\":\"10.21205/deufmd.2023257517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Site response analyses are seen to be the reliable way of reproducing and predicting earthquake input motions. The analyses are generally performed by adopting equivalent linear or nonlinear approaches solving the problem in time or frequency domains. Instrumented geotechnical downhole arrays, in this regard, are very important as to obtaining earthquake data through the soil deposits. This data can eventually be used to verify the approaches developed for site response analyses. In this study, the input motions of the 24.05.2014 (Aegean) earthquake event recorded at relatively recently installed Atakoy geotechnical downhole array are assessed. Moreover, the recorded input motions at the bottom bedrock level of the downhole array are simulated in the East-West and North-South directions. The site response analyses are conducted based on frequency domain equivalent linear approach. The peak ground acceleration and the spectral accelerations of the predicted input motions are compared with the recorded ones at 70 m, 50 m, 25 m and at the ground surface. The results indicate that the spectral acceleration predictions can be simulated well until the depth of 50 m. At 25 m and at ground surface, the predictions are always greater than the recorded one. However, the predictions still exhibits good indication of actual values in the North-South direction. In terms of peak ground acceleration and shear strain profiles, the predictions display the soil layers featured with different soil properties. The equivalent linear approach appears to be suited reasonably well in site response analysis.\",\"PeriodicalId\":11622,\"journal\":{\"name\":\"El-Cezeri Fen ve Mühendislik Dergisi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"El-Cezeri Fen ve Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21205/deufmd.2023257517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21205/deufmd.2023257517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

场地反应分析被认为是再现和预测地震输入运动的可靠方法。分析一般采用等效的线性或非线性方法在时域或频域上求解问题。在这方面,仪器岩土井下阵列对于通过土壤沉积物获得地震数据是非常重要的。这些数据最终可用于验证为现场反应分析而开发的方法。在本研究中,评估了最近安装的Atakoy岩土井下阵列记录的2014年5月24日(爱琴海)地震事件的输入运动。此外,在东西和南北方向上模拟了井下阵列底部基岩水平记录的输入运动。基于频域等效线性方法进行了场地响应分析。在70 m、50 m、25 m和地面实测位置,将预测输入运动的峰值加速度和谱加速度与实测结果进行了比较。结果表明,在50 m深度之前,谱加速度预测可以很好地模拟。在25米和地面,预测结果总是大于记录值。然而,预测仍然很好地显示了南北方向的实际值。在峰值地面加速度和剪切应变剖面上,预测结果显示了具有不同土壤性质的土层。等效线性方法在场地响应分析中具有较好的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ataköy Gözlem Kuyusunda Saha Tepki Tahminleri
Site response analyses are seen to be the reliable way of reproducing and predicting earthquake input motions. The analyses are generally performed by adopting equivalent linear or nonlinear approaches solving the problem in time or frequency domains. Instrumented geotechnical downhole arrays, in this regard, are very important as to obtaining earthquake data through the soil deposits. This data can eventually be used to verify the approaches developed for site response analyses. In this study, the input motions of the 24.05.2014 (Aegean) earthquake event recorded at relatively recently installed Atakoy geotechnical downhole array are assessed. Moreover, the recorded input motions at the bottom bedrock level of the downhole array are simulated in the East-West and North-South directions. The site response analyses are conducted based on frequency domain equivalent linear approach. The peak ground acceleration and the spectral accelerations of the predicted input motions are compared with the recorded ones at 70 m, 50 m, 25 m and at the ground surface. The results indicate that the spectral acceleration predictions can be simulated well until the depth of 50 m. At 25 m and at ground surface, the predictions are always greater than the recorded one. However, the predictions still exhibits good indication of actual values in the North-South direction. In terms of peak ground acceleration and shear strain profiles, the predictions display the soil layers featured with different soil properties. The equivalent linear approach appears to be suited reasonably well in site response analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信