基于深度q网络的有限功率微电网多资源能量管理

Q3 Engineering
Nabil Jalil Aklo, Mofeed Turky Rashid
{"title":"基于深度q网络的有限功率微电网多资源能量管理","authors":"Nabil Jalil Aklo, Mofeed Turky Rashid","doi":"10.1504/ijpt.2023.129667","DOIUrl":null,"url":null,"abstract":"To overcome the shortage of power supply to the rural area, a hybrid connected mode micro-grid (MG) is proposed. It is suggested to include a diesel generator (DG) and renewable energy resources (RER) with a limited power of utility grid. To ensure the availability of fuel supply, the take-or-pay method is employed. In this paper, a smart energy management system (EMS) has been proposed to control the operation of hybrid MG, in addition to ensuring complete fuel disbursement under the scheduling of fuel supply. To facilitate the construction of EMS, a free model-based reinforcement learning (RL) algorithm has been employed for this purpose, in which the design of this algorithm depends on deep Q-network (DQN). The simulation of the algorithm has been achieved by MATLAB to validate the proposed system; the results showed a good performance of the technique compared with the performance achieved by improved particle swarm optimisation (IPSO) algorithm.","PeriodicalId":37550,"journal":{"name":"International Journal of Powertrains","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep-Q-network-based energy management of multi-resources in limited power micro-grid\",\"authors\":\"Nabil Jalil Aklo, Mofeed Turky Rashid\",\"doi\":\"10.1504/ijpt.2023.129667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To overcome the shortage of power supply to the rural area, a hybrid connected mode micro-grid (MG) is proposed. It is suggested to include a diesel generator (DG) and renewable energy resources (RER) with a limited power of utility grid. To ensure the availability of fuel supply, the take-or-pay method is employed. In this paper, a smart energy management system (EMS) has been proposed to control the operation of hybrid MG, in addition to ensuring complete fuel disbursement under the scheduling of fuel supply. To facilitate the construction of EMS, a free model-based reinforcement learning (RL) algorithm has been employed for this purpose, in which the design of this algorithm depends on deep Q-network (DQN). The simulation of the algorithm has been achieved by MATLAB to validate the proposed system; the results showed a good performance of the technique compared with the performance achieved by improved particle swarm optimisation (IPSO) algorithm.\",\"PeriodicalId\":37550,\"journal\":{\"name\":\"International Journal of Powertrains\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Powertrains\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijpt.2023.129667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Powertrains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijpt.2023.129667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

为解决农村地区电力供应不足的问题,提出了一种混合并网模式微电网。建议将柴油发电机组(DG)和可再生能源发电机组(RER)并网,并网功率有限。为保证燃料供应的可得性,采用“不付即付”的方法。本文提出了一种智能能源管理系统(EMS)来控制混合动力汽车的运行,并保证在燃料供应调度下燃料的完全分配。为了便于构建EMS,为此采用了一种免费的基于模型的强化学习(RL)算法,该算法的设计依赖于深度q网络(deep Q-network, DQN)。通过MATLAB对该算法进行了仿真,验证了所提系统的有效性;结果表明,与改进的粒子群优化算法(IPSO)相比,该算法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-Q-network-based energy management of multi-resources in limited power micro-grid
To overcome the shortage of power supply to the rural area, a hybrid connected mode micro-grid (MG) is proposed. It is suggested to include a diesel generator (DG) and renewable energy resources (RER) with a limited power of utility grid. To ensure the availability of fuel supply, the take-or-pay method is employed. In this paper, a smart energy management system (EMS) has been proposed to control the operation of hybrid MG, in addition to ensuring complete fuel disbursement under the scheduling of fuel supply. To facilitate the construction of EMS, a free model-based reinforcement learning (RL) algorithm has been employed for this purpose, in which the design of this algorithm depends on deep Q-network (DQN). The simulation of the algorithm has been achieved by MATLAB to validate the proposed system; the results showed a good performance of the technique compared with the performance achieved by improved particle swarm optimisation (IPSO) algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Powertrains
International Journal of Powertrains Engineering-Automotive Engineering
CiteScore
1.20
自引率
0.00%
发文量
25
期刊介绍: IJPT addresses novel scientific/technological results contributing to advancing powertrain technology, from components/subsystems to system integration/controls. Focus is primarily but not exclusively on ground vehicle applications. IJPT''s perspective is largely inspired by the fact that many innovations in powertrain advancement are only possible due to synergies between mechanical design, mechanisms, mechatronics, controls, networking system integration, etc. The science behind these is characterised by physical phenomena across the range of physics (multiphysics) and scale of motion (multiscale) governing the behaviour of components/subsystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信