非一致凸优化问题的随机块坐标方法

IF 1
Mathias Staudigl, Paulin Jacquot
{"title":"非一致凸优化问题的随机块坐标方法","authors":"Mathias Staudigl, Paulin Jacquot","doi":"10.1186/s13663-023-00751-0","DOIUrl":null,"url":null,"abstract":"Abstract We develop a novel randomised block-coordinate primal-dual algorithm for a class of non-smooth ill-posed convex programs. Lying midway between the celebrated Chambolle–Pock primal-dual algorithm and Tseng’s accelerated proximal gradient method, we establish global convergence of the last iterate as well as optimal $O(1/k)$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:math> and $O(1/k^{2})$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>k</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:math> complexity rates in the convex and strongly convex case, respectively, k being the iteration count. Motivated by the increased complexity in the control of distribution-level electric-power systems, we test the performance of our method on a second-order cone relaxation of an AC-OPF problem. Distributed control is achieved via the distributed locational marginal prices (DLMPs), which are obtained as dual variables in our optimisation framework.","PeriodicalId":87256,"journal":{"name":"Fixed point theory and algorithms for sciences and engineering","volume":"21 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random block-coordinate methods for inconsistent convex optimisation problems\",\"authors\":\"Mathias Staudigl, Paulin Jacquot\",\"doi\":\"10.1186/s13663-023-00751-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a novel randomised block-coordinate primal-dual algorithm for a class of non-smooth ill-posed convex programs. Lying midway between the celebrated Chambolle–Pock primal-dual algorithm and Tseng’s accelerated proximal gradient method, we establish global convergence of the last iterate as well as optimal $O(1/k)$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:math> and $O(1/k^{2})$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>O</mml:mi> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:msup> <mml:mi>k</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>)</mml:mo> </mml:math> complexity rates in the convex and strongly convex case, respectively, k being the iteration count. Motivated by the increased complexity in the control of distribution-level electric-power systems, we test the performance of our method on a second-order cone relaxation of an AC-OPF problem. Distributed control is achieved via the distributed locational marginal prices (DLMPs), which are obtained as dual variables in our optimisation framework.\",\"PeriodicalId\":87256,\"journal\":{\"name\":\"Fixed point theory and algorithms for sciences and engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed point theory and algorithms for sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13663-023-00751-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed point theory and algorithms for sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13663-023-00751-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要针对一类非光滑病态凸规划,提出了一种新的随机块坐标原对偶算法。在著名的Chambolle-Pock原始对偶算法和Tseng加速近端梯度法之间,我们分别在凸和强凸情况下建立了最后一次迭代的全局收敛性以及最优的$O(1/k)$ O(1/k)和$O(1/k^{2})$ O(1/k)复杂度率,k为迭代计数。由于配电级电力系统控制的复杂性日益增加,我们在AC-OPF问题的二阶锥松弛上测试了我们的方法的性能。分布式控制是通过分布式位置边际价格(DLMPs)来实现的,它在我们的优化框架中作为双变量获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Random block-coordinate methods for inconsistent convex optimisation problems

Random block-coordinate methods for inconsistent convex optimisation problems
Abstract We develop a novel randomised block-coordinate primal-dual algorithm for a class of non-smooth ill-posed convex programs. Lying midway between the celebrated Chambolle–Pock primal-dual algorithm and Tseng’s accelerated proximal gradient method, we establish global convergence of the last iterate as well as optimal $O(1/k)$ O ( 1 / k ) and $O(1/k^{2})$ O ( 1 / k 2 ) complexity rates in the convex and strongly convex case, respectively, k being the iteration count. Motivated by the increased complexity in the control of distribution-level electric-power systems, we test the performance of our method on a second-order cone relaxation of an AC-OPF problem. Distributed control is achieved via the distributed locational marginal prices (DLMPs), which are obtained as dual variables in our optimisation framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信