{"title":"内禀高斯马尔可夫随机场的尺度先验应用于血压数据","authors":"Maria‐Zafeiria Spyropoulou, James Bentham","doi":"10.1111/stan.12330","DOIUrl":null,"url":null,"abstract":"An Intrinsic Gaussian Markov Random Field (IGMRF) can be used to induce conditional dependence in Bayesian hierarchical models. IGMRFs have both a precision matrix, which defines the neighborhood structure of the model, and a precision, or scaling, parameter. Previous studies have shown the importance of selecting the prior for this scaling parameter appropriately for different types of IGMRF, as it can have a substantial impact on posterior estimates. Here, we focus on cases in one and two dimensions, where tuning of the prior is achieved by mapping it to the marginal SD of an IGMRF of corresponding dimensionality. We compare the effects of scaling various IGMRFs, including an application to real two‐dimensional blood pressure data using MCMC methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling priors for Intrinsic Gaussian Markov Random Fields applied to blood pressure data\",\"authors\":\"Maria‐Zafeiria Spyropoulou, James Bentham\",\"doi\":\"10.1111/stan.12330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Intrinsic Gaussian Markov Random Field (IGMRF) can be used to induce conditional dependence in Bayesian hierarchical models. IGMRFs have both a precision matrix, which defines the neighborhood structure of the model, and a precision, or scaling, parameter. Previous studies have shown the importance of selecting the prior for this scaling parameter appropriately for different types of IGMRF, as it can have a substantial impact on posterior estimates. Here, we focus on cases in one and two dimensions, where tuning of the prior is achieved by mapping it to the marginal SD of an IGMRF of corresponding dimensionality. We compare the effects of scaling various IGMRFs, including an application to real two‐dimensional blood pressure data using MCMC methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12330\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/stan.12330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Scaling priors for Intrinsic Gaussian Markov Random Fields applied to blood pressure data
An Intrinsic Gaussian Markov Random Field (IGMRF) can be used to induce conditional dependence in Bayesian hierarchical models. IGMRFs have both a precision matrix, which defines the neighborhood structure of the model, and a precision, or scaling, parameter. Previous studies have shown the importance of selecting the prior for this scaling parameter appropriately for different types of IGMRF, as it can have a substantial impact on posterior estimates. Here, we focus on cases in one and two dimensions, where tuning of the prior is achieved by mapping it to the marginal SD of an IGMRF of corresponding dimensionality. We compare the effects of scaling various IGMRFs, including an application to real two‐dimensional blood pressure data using MCMC methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.