神经成像和电生理学中动态FC估计的稳定性:解决方案和限制

IF 3.6 3区 医学 Q2 NEUROSCIENCES
Sonsoles Alonso, Diego Vidaurre
{"title":"神经成像和电生理学中动态FC估计的稳定性:解决方案和限制","authors":"Sonsoles Alonso, Diego Vidaurre","doi":"10.1162/netn_a_00331","DOIUrl":null,"url":null,"abstract":"Abstract Time-varying functional connectivity (FC) methods are used to map the spatiotemporal organization of brain activity. However, their estimation can be unstable, in the sense that different runs of the inference may yield different solutions. But to draw meaningful relations to behavior, estimates must be robust and reproducible. Here, we propose two solutions using the hidden Markov model (HMM) as a descriptive model of time-varying FC. The first, best ranked HMM, involves running the inference multiple times and selecting the best model based on a quantitative measure combining fitness and model complexity. The second, hierarchical-clustered HMM, generates stable cluster state time series by applying hierarchical clustering to the state time series obtained from multiple runs. Experimental results on fMRI and magnetoencephalography data demonstrate that these approaches substantially improve the stability of time-varying FC estimations. Overall, hierarchical-clustered HMM is preferred when the inference variability is high, while the best ranked HMM performs better otherwise.","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"39 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards stability of dynamic FC estimates in neuroimaging and electrophysiology: solutions and limits\",\"authors\":\"Sonsoles Alonso, Diego Vidaurre\",\"doi\":\"10.1162/netn_a_00331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Time-varying functional connectivity (FC) methods are used to map the spatiotemporal organization of brain activity. However, their estimation can be unstable, in the sense that different runs of the inference may yield different solutions. But to draw meaningful relations to behavior, estimates must be robust and reproducible. Here, we propose two solutions using the hidden Markov model (HMM) as a descriptive model of time-varying FC. The first, best ranked HMM, involves running the inference multiple times and selecting the best model based on a quantitative measure combining fitness and model complexity. The second, hierarchical-clustered HMM, generates stable cluster state time series by applying hierarchical clustering to the state time series obtained from multiple runs. Experimental results on fMRI and magnetoencephalography data demonstrate that these approaches substantially improve the stability of time-varying FC estimations. Overall, hierarchical-clustered HMM is preferred when the inference variability is high, while the best ranked HMM performs better otherwise.\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00331\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/netn_a_00331","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

时变功能连通性(FC)方法用于映射大脑活动的时空组织。然而,它们的估计可能是不稳定的,因为不同的推理运行可能产生不同的解。但是,为了与行为建立有意义的关系,估计必须是可靠的和可重复的。本文采用隐马尔可夫模型(HMM)作为时变FC的描述模型,提出了两种解决方案。第一种是排名最佳的HMM,它涉及多次运行推理,并根据结合适应度和模型复杂性的定量度量选择最佳模型。第二种是层次聚类HMM,它通过对多次运行获得的状态时间序列应用层次聚类来生成稳定的集群状态时间序列。fMRI和脑磁图数据的实验结果表明,这些方法大大提高了时变FC估计的稳定性。总的来说,当推理可变性高时,分层聚类HMM是首选,而排名最好的HMM在其他情况下表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards stability of dynamic FC estimates in neuroimaging and electrophysiology: solutions and limits
Abstract Time-varying functional connectivity (FC) methods are used to map the spatiotemporal organization of brain activity. However, their estimation can be unstable, in the sense that different runs of the inference may yield different solutions. But to draw meaningful relations to behavior, estimates must be robust and reproducible. Here, we propose two solutions using the hidden Markov model (HMM) as a descriptive model of time-varying FC. The first, best ranked HMM, involves running the inference multiple times and selecting the best model based on a quantitative measure combining fitness and model complexity. The second, hierarchical-clustered HMM, generates stable cluster state time series by applying hierarchical clustering to the state time series obtained from multiple runs. Experimental results on fMRI and magnetoencephalography data demonstrate that these approaches substantially improve the stability of time-varying FC estimations. Overall, hierarchical-clustered HMM is preferred when the inference variability is high, while the best ranked HMM performs better otherwise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信