利用图像色彩统计和卷积神经网络对不同光照环境下的表面颜色判别进行建模。

Samuel Ponting, Takuma Morimoto, Hannah E Smithson
{"title":"利用图像色彩统计和卷积神经网络对不同光照环境下的表面颜色判别进行建模。","authors":"Samuel Ponting, Takuma Morimoto, Hannah E Smithson","doi":"10.1364/josaa.4799861","DOIUrl":null,"url":null,"abstract":"We modeled discrimination thresholds for object colors under different lighting environments [J. Opt. Soc. Am. 35, B244 (2018)]. First, we built models based on chromatic statistics, testing 60 models in total. Second, we trained convolutional neural networks (CNNs), using 160,280 images labeled by either the ground-truth or human responses. No single chromatic statistics model was sufficient to describe human discrimination thresholds across conditions, while human-response-trained CNNs nearly perfectly predicted human thresholds. Guided by region-of-interest analysis of the network, we modified the chromatic statistics models to use only the lower regions of the objects, which substantially improved performance.","PeriodicalId":17413,"journal":{"name":"Journal of the Optical Society of America","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling surface color discrimination under different lighting environments using image chromatic statistics and convolutional neural networks.\",\"authors\":\"Samuel Ponting, Takuma Morimoto, Hannah E Smithson\",\"doi\":\"10.1364/josaa.4799861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We modeled discrimination thresholds for object colors under different lighting environments [J. Opt. Soc. Am. 35, B244 (2018)]. First, we built models based on chromatic statistics, testing 60 models in total. Second, we trained convolutional neural networks (CNNs), using 160,280 images labeled by either the ground-truth or human responses. No single chromatic statistics model was sufficient to describe human discrimination thresholds across conditions, while human-response-trained CNNs nearly perfectly predicted human thresholds. Guided by region-of-interest analysis of the network, we modified the chromatic statistics models to use only the lower regions of the objects, which substantially improved performance.\",\"PeriodicalId\":17413,\"journal\":{\"name\":\"Journal of the Optical Society of America\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josaa.4799861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josaa.4799861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在不同光照环境下对物体颜色进行判别阈值建模[J]。选择,Soc。[j].中国科学院学报,2014(5)。首先,我们建立了基于色统计的模型,共测试了60个模型。其次,我们训练卷积神经网络(cnn),使用160,280张图像标记,这些图像要么是真实的,要么是人类的反应。没有单一的彩色统计模型足以描述不同条件下的人类歧视阈值,而人类反应训练的cnn几乎完美地预测了人类阈值。在网络兴趣区域分析的指导下,我们修改了颜色统计模型,只使用对象的较低区域,这大大提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling surface color discrimination under different lighting environments using image chromatic statistics and convolutional neural networks.
We modeled discrimination thresholds for object colors under different lighting environments [J. Opt. Soc. Am. 35, B244 (2018)]. First, we built models based on chromatic statistics, testing 60 models in total. Second, we trained convolutional neural networks (CNNs), using 160,280 images labeled by either the ground-truth or human responses. No single chromatic statistics model was sufficient to describe human discrimination thresholds across conditions, while human-response-trained CNNs nearly perfectly predicted human thresholds. Guided by region-of-interest analysis of the network, we modified the chromatic statistics models to use only the lower regions of the objects, which substantially improved performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: OSA was published by The Optical Society from January 1917 to December 1983 before dividing into JOSA A: Optics and Image Science and JOSA B: Optical Physics in 1984.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信