Dhruv Vyas, Erik Jorgensen, Yu-Hsiang Wu, Octav Chipara
{"title":"利用人口覆盖率评估和优化助听器自配方法","authors":"Dhruv Vyas, Erik Jorgensen, Yu-Hsiang Wu, Octav Chipara","doi":"10.3389/fauot.2023.1223209","DOIUrl":null,"url":null,"abstract":"Adults with mild-to-moderate hearing loss can use over-the-counter hearing aids to treat their hearing loss at a fraction of traditional hearing care costs. These products incorporate self-fitting methods that allow end-users to configure their hearing aids without the help of an audiologist. A self-fitting method helps users configure the gain-frequency responses that control the amplification for each frequency band of the incoming sound. This paper considers how to guide the design of self-fitting methods by evaluating certain aspects of their design using computational tools before performing user studies. Most existing fitting methods provide various user interfaces to allow users to select a configuration from a predetermined set of presets. Accordingly, it is essential for the presets to meet the hearing needs of a large fraction of users who suffer from varying degrees of hearing loss and have unique hearing preferences. To this end, we propose a novel metric for evaluating the effectiveness of preset-based approaches by computing their population coverage. The population coverage estimates the fraction of users for which a self-fitting method can find a configuration they prefer. A unique aspect of our approach is a probabilistic model that captures how a user's unique preferences differ from other users with similar hearing loss. Next, we propose methods for building preset-based and slider-based self-fitting methods that maximize the population coverage. Simulation results demonstrate that the proposed algorithms can effectively select a small number of presets that provide higher population coverage than clustering-based approaches. Moreover, we may use our algorithms to configure the number of increments of slider-based methods. We expect that the computational tools presented in this article will help reduce the cost of developing new self-fitting methods by allowing researchers to evaluate population coverage before performing user studies.","PeriodicalId":483207,"journal":{"name":"Frontiers in Audiology and Otology","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating and optimizing hearing-aid self-fitting methods using population coverage\",\"authors\":\"Dhruv Vyas, Erik Jorgensen, Yu-Hsiang Wu, Octav Chipara\",\"doi\":\"10.3389/fauot.2023.1223209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adults with mild-to-moderate hearing loss can use over-the-counter hearing aids to treat their hearing loss at a fraction of traditional hearing care costs. These products incorporate self-fitting methods that allow end-users to configure their hearing aids without the help of an audiologist. A self-fitting method helps users configure the gain-frequency responses that control the amplification for each frequency band of the incoming sound. This paper considers how to guide the design of self-fitting methods by evaluating certain aspects of their design using computational tools before performing user studies. Most existing fitting methods provide various user interfaces to allow users to select a configuration from a predetermined set of presets. Accordingly, it is essential for the presets to meet the hearing needs of a large fraction of users who suffer from varying degrees of hearing loss and have unique hearing preferences. To this end, we propose a novel metric for evaluating the effectiveness of preset-based approaches by computing their population coverage. The population coverage estimates the fraction of users for which a self-fitting method can find a configuration they prefer. A unique aspect of our approach is a probabilistic model that captures how a user's unique preferences differ from other users with similar hearing loss. Next, we propose methods for building preset-based and slider-based self-fitting methods that maximize the population coverage. Simulation results demonstrate that the proposed algorithms can effectively select a small number of presets that provide higher population coverage than clustering-based approaches. Moreover, we may use our algorithms to configure the number of increments of slider-based methods. We expect that the computational tools presented in this article will help reduce the cost of developing new self-fitting methods by allowing researchers to evaluate population coverage before performing user studies.\",\"PeriodicalId\":483207,\"journal\":{\"name\":\"Frontiers in Audiology and Otology\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Audiology and Otology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fauot.2023.1223209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Audiology and Otology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fauot.2023.1223209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating and optimizing hearing-aid self-fitting methods using population coverage
Adults with mild-to-moderate hearing loss can use over-the-counter hearing aids to treat their hearing loss at a fraction of traditional hearing care costs. These products incorporate self-fitting methods that allow end-users to configure their hearing aids without the help of an audiologist. A self-fitting method helps users configure the gain-frequency responses that control the amplification for each frequency band of the incoming sound. This paper considers how to guide the design of self-fitting methods by evaluating certain aspects of their design using computational tools before performing user studies. Most existing fitting methods provide various user interfaces to allow users to select a configuration from a predetermined set of presets. Accordingly, it is essential for the presets to meet the hearing needs of a large fraction of users who suffer from varying degrees of hearing loss and have unique hearing preferences. To this end, we propose a novel metric for evaluating the effectiveness of preset-based approaches by computing their population coverage. The population coverage estimates the fraction of users for which a self-fitting method can find a configuration they prefer. A unique aspect of our approach is a probabilistic model that captures how a user's unique preferences differ from other users with similar hearing loss. Next, we propose methods for building preset-based and slider-based self-fitting methods that maximize the population coverage. Simulation results demonstrate that the proposed algorithms can effectively select a small number of presets that provide higher population coverage than clustering-based approaches. Moreover, we may use our algorithms to configure the number of increments of slider-based methods. We expect that the computational tools presented in this article will help reduce the cost of developing new self-fitting methods by allowing researchers to evaluate population coverage before performing user studies.