混合因子结构大协方差矩阵的估计

IF 2.9 4区 经济学 Q1 ECONOMICS
Runyu Dai, Yoshimasa Uematsu, Yasumasa Matsuda
{"title":"混合因子结构大协方差矩阵的估计","authors":"Runyu Dai, Yoshimasa Uematsu, Yasumasa Matsuda","doi":"10.1093/ectj/utad018","DOIUrl":null,"url":null,"abstract":"Abstract We extend the Principal Orthogonal complEment Thresholding (POET) framework by Fan, J., Y. Liao, M. Mincheva (2013) to estimate large covariance matrices with a “mixed” structure of observable and unobservable strong/weak factors, and we call this method the extended POET (ePOET). Especially, the weak factor structure allows the existence of much slowly divergent eigenvalues of the covariance matrix that are frequently observed in real data. Under some mild conditions, we derive the uniform consistency of the proposed estimator for the cases with or without observable factors. Furthermore, several simulation studies show that the ePOET achieves good finite-sample performance regardless of data with strong, weak, or mixed factors structure. Finally, we conduct empirical studies to present the practical usefulness of the ePOET.","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Large Covariance Matrices with Mixed Factor Structures\",\"authors\":\"Runyu Dai, Yoshimasa Uematsu, Yasumasa Matsuda\",\"doi\":\"10.1093/ectj/utad018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We extend the Principal Orthogonal complEment Thresholding (POET) framework by Fan, J., Y. Liao, M. Mincheva (2013) to estimate large covariance matrices with a “mixed” structure of observable and unobservable strong/weak factors, and we call this method the extended POET (ePOET). Especially, the weak factor structure allows the existence of much slowly divergent eigenvalues of the covariance matrix that are frequently observed in real data. Under some mild conditions, we derive the uniform consistency of the proposed estimator for the cases with or without observable factors. Furthermore, several simulation studies show that the ePOET achieves good finite-sample performance regardless of data with strong, weak, or mixed factors structure. Finally, we conduct empirical studies to present the practical usefulness of the ePOET.\",\"PeriodicalId\":50555,\"journal\":{\"name\":\"Econometrics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ectj/utad018\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ectj/utad018","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文扩展了Fan, J., Y. Liao, M. Mincheva(2013)的Principal Orthogonal补体阈值(POET)框架,以估计具有可观察和不可观察强/弱因子“混合”结构的大协方差矩阵,并将该方法称为扩展POET (ePOET)。特别是,弱因子结构允许协方差矩阵的特征值存在非常缓慢的发散,这在实际数据中经常观察到。在一些温和的条件下,我们得到了在有或没有可观测因子的情况下所提出的估计量的一致相合性。此外,一些仿真研究表明,无论数据具有强、弱或混合因素结构,ePOET都能获得良好的有限样本性能。最后,我们进行了实证研究,以展示ePOET的实际用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Large Covariance Matrices with Mixed Factor Structures
Abstract We extend the Principal Orthogonal complEment Thresholding (POET) framework by Fan, J., Y. Liao, M. Mincheva (2013) to estimate large covariance matrices with a “mixed” structure of observable and unobservable strong/weak factors, and we call this method the extended POET (ePOET). Especially, the weak factor structure allows the existence of much slowly divergent eigenvalues of the covariance matrix that are frequently observed in real data. Under some mild conditions, we derive the uniform consistency of the proposed estimator for the cases with or without observable factors. Furthermore, several simulation studies show that the ePOET achieves good finite-sample performance regardless of data with strong, weak, or mixed factors structure. Finally, we conduct empirical studies to present the practical usefulness of the ePOET.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信