{"title":"极地野生动物研究的卫星遥感","authors":"Heather J. Lynch","doi":"10.4031/mtsj.57.3.1","DOIUrl":null,"url":null,"abstract":"Abstract Wildlife research in the polar regions has historically been limited by the logistical constraints of site access, but recent developments in the use of satellite imagery for animal detection has unlocked new possibilities for pan-Arctic and pan-Antarctic monitoring of animal populations. A range of different sensor systems have been used for wildlife research, but most have focused on optical sensors that collect data in the visible spectrum and can be directly interpreted similar to a photograph. These include medium-resolution sensors like Landsat (30 m) and Sentinel-2 (10 m) and very high-resolution sensors such as Maxar's Worldview-2 (51 cm) and Worldview-3 (31 cm). These long-established satellite systems have been joined more recently by constellations of smaller satellites (so-called “Small Sats”) that offer imagery of comparable spatial and spectral resolution to those operated by Maxar. This rapidly expanding portfolio of earth observation satellites offers the potential for a radical transformation of wildlife research in polar regions, but the sheer volume of data being collected now eclipses our capacity for manual imagery interpretation. To meet this challenge, researchers are now harnessing advances in computer vision that, coupled with improvements in computing capacity, promise to deliver a new era in our ability to monitor polar wildlife.","PeriodicalId":49878,"journal":{"name":"Marine Technology Society Journal","volume":"28 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite Remote Sensing for Wildlife Research in the Polar Regions\",\"authors\":\"Heather J. Lynch\",\"doi\":\"10.4031/mtsj.57.3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Wildlife research in the polar regions has historically been limited by the logistical constraints of site access, but recent developments in the use of satellite imagery for animal detection has unlocked new possibilities for pan-Arctic and pan-Antarctic monitoring of animal populations. A range of different sensor systems have been used for wildlife research, but most have focused on optical sensors that collect data in the visible spectrum and can be directly interpreted similar to a photograph. These include medium-resolution sensors like Landsat (30 m) and Sentinel-2 (10 m) and very high-resolution sensors such as Maxar's Worldview-2 (51 cm) and Worldview-3 (31 cm). These long-established satellite systems have been joined more recently by constellations of smaller satellites (so-called “Small Sats”) that offer imagery of comparable spatial and spectral resolution to those operated by Maxar. This rapidly expanding portfolio of earth observation satellites offers the potential for a radical transformation of wildlife research in polar regions, but the sheer volume of data being collected now eclipses our capacity for manual imagery interpretation. To meet this challenge, researchers are now harnessing advances in computer vision that, coupled with improvements in computing capacity, promise to deliver a new era in our ability to monitor polar wildlife.\",\"PeriodicalId\":49878,\"journal\":{\"name\":\"Marine Technology Society Journal\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Technology Society Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4031/mtsj.57.3.1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Technology Society Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4031/mtsj.57.3.1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Satellite Remote Sensing for Wildlife Research in the Polar Regions
Abstract Wildlife research in the polar regions has historically been limited by the logistical constraints of site access, but recent developments in the use of satellite imagery for animal detection has unlocked new possibilities for pan-Arctic and pan-Antarctic monitoring of animal populations. A range of different sensor systems have been used for wildlife research, but most have focused on optical sensors that collect data in the visible spectrum and can be directly interpreted similar to a photograph. These include medium-resolution sensors like Landsat (30 m) and Sentinel-2 (10 m) and very high-resolution sensors such as Maxar's Worldview-2 (51 cm) and Worldview-3 (31 cm). These long-established satellite systems have been joined more recently by constellations of smaller satellites (so-called “Small Sats”) that offer imagery of comparable spatial and spectral resolution to those operated by Maxar. This rapidly expanding portfolio of earth observation satellites offers the potential for a radical transformation of wildlife research in polar regions, but the sheer volume of data being collected now eclipses our capacity for manual imagery interpretation. To meet this challenge, researchers are now harnessing advances in computer vision that, coupled with improvements in computing capacity, promise to deliver a new era in our ability to monitor polar wildlife.
期刊介绍:
The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers, six times a year, on subjects of interest to the society: marine technology, ocean science, marine policy, and education.