用于复杂野外环境下快速自主飞行的高效对焦自编码器

IF 4.4 2区 地球科学 Q1 REMOTE SENSING
Drones Pub Date : 2023-09-27 DOI:10.3390/drones7100609
Kaiyu Hu, Huanlin Li, Jiafan Zhuang, Zhifeng Hao, Zhun Fan
{"title":"用于复杂野外环境下快速自主飞行的高效对焦自编码器","authors":"Kaiyu Hu, Huanlin Li, Jiafan Zhuang, Zhifeng Hao, Zhun Fan","doi":"10.3390/drones7100609","DOIUrl":null,"url":null,"abstract":"The autonomous navigation of aerial robots in unknown and complex outdoor environments is a challenging problem that typically requires planners to generate collision-free trajectories based on human expert rules for fast navigation. Presently, aerial robots suffer from high latency in acquiring environmental information, which limits the control strategies that the vehicle can implement. In this study, we proposed the SAC_FAE algorithm for high-speed navigation in complex environments using deep reinforcement learning (DRL) policies. Our approach consisted of a soft actor–critic (SAC) algorithm and a focus autoencoder (FAE). Our end-to-end DRL navigation policy enabled a flying robot to efficiently accomplish navigation tasks without prior map information by relying solely on the front-end depth frames and its own pose information. The proposed algorithm outperformed existing trajectory-based optimization approaches at flight speeds exceeding 3 m/s in multiple testing environments, which demonstrates its effectiveness and efficiency.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"26 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Focus Autoencoders for Fast Autonomous Flight in Intricate Wild Scenarios\",\"authors\":\"Kaiyu Hu, Huanlin Li, Jiafan Zhuang, Zhifeng Hao, Zhun Fan\",\"doi\":\"10.3390/drones7100609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The autonomous navigation of aerial robots in unknown and complex outdoor environments is a challenging problem that typically requires planners to generate collision-free trajectories based on human expert rules for fast navigation. Presently, aerial robots suffer from high latency in acquiring environmental information, which limits the control strategies that the vehicle can implement. In this study, we proposed the SAC_FAE algorithm for high-speed navigation in complex environments using deep reinforcement learning (DRL) policies. Our approach consisted of a soft actor–critic (SAC) algorithm and a focus autoencoder (FAE). Our end-to-end DRL navigation policy enabled a flying robot to efficiently accomplish navigation tasks without prior map information by relying solely on the front-end depth frames and its own pose information. The proposed algorithm outperformed existing trajectory-based optimization approaches at flight speeds exceeding 3 m/s in multiple testing environments, which demonstrates its effectiveness and efficiency.\",\"PeriodicalId\":36448,\"journal\":{\"name\":\"Drones\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones7100609\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100609","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

在未知和复杂的室外环境中,空中机器人的自主导航是一个具有挑战性的问题,通常需要规划者根据人类专家规则生成无碰撞轨迹,以实现快速导航。目前,空中机器人在获取环境信息时存在较大的延迟,这限制了飞行器所能实施的控制策略。在本研究中,我们使用深度强化学习(DRL)策略提出了用于复杂环境下高速导航的SAC_FAE算法。我们的方法包括一个软演员评论家(SAC)算法和一个焦点自动编码器(FAE)。我们的端到端DRL导航策略使飞行机器人能够在没有事先地图信息的情况下,仅依靠前端深度帧和自身姿态信息,有效地完成导航任务。在多个测试环境下,该算法在飞行速度超过3 m/s的情况下优于现有的基于轨迹的优化方法,验证了算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Focus Autoencoders for Fast Autonomous Flight in Intricate Wild Scenarios
The autonomous navigation of aerial robots in unknown and complex outdoor environments is a challenging problem that typically requires planners to generate collision-free trajectories based on human expert rules for fast navigation. Presently, aerial robots suffer from high latency in acquiring environmental information, which limits the control strategies that the vehicle can implement. In this study, we proposed the SAC_FAE algorithm for high-speed navigation in complex environments using deep reinforcement learning (DRL) policies. Our approach consisted of a soft actor–critic (SAC) algorithm and a focus autoencoder (FAE). Our end-to-end DRL navigation policy enabled a flying robot to efficiently accomplish navigation tasks without prior map information by relying solely on the front-end depth frames and its own pose information. The proposed algorithm outperformed existing trajectory-based optimization approaches at flight speeds exceeding 3 m/s in multiple testing environments, which demonstrates its effectiveness and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drones
Drones Engineering-Aerospace Engineering
CiteScore
5.60
自引率
18.80%
发文量
331
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信