{"title":"牛顿加热和非均匀温度下非定常oldyd - B流体流动的常比例Caputo算子分析","authors":"Muhammad Arif, Poom Kumam, Wiboonsak Watthayu","doi":"10.1002/zamm.202300048","DOIUrl":null,"url":null,"abstract":"Abstract The Caputo operator has recently gained popularity as a widely used operator in fractional calculus. The purpose of this current research is to develop a new operator by combining the Caputo and proportional derivatives, resulting in the constant proportional Caputo (CPC) fractional operator. To demonstrate the dynamic behavior of this newly defined operator, it was applied to the unsteady Oldroyd‐B fluid model. Additionally, the research considered an Oldroyd‐B fluid in a generalized Darcy medium, considering non‐uniform temperature, radiation, and heat generation. Analytical solutions for the proposed model were obtained and presented in graphical form using the computational software MATHCAD. The impact of various physical parameters was also examined through graphical analysis of velocity and temperature profiles, as well as a comparison between isothermal and non‐uniform temperature. In conclusion, this research found that the CPC fractional operator effectively explains the dynamics of the Oldroyd‐B fluid model with stable and strong memory effects, compared to the classical model.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of constant proportional Caputo operator on the unsteady Oldroyd‐B fluid flow with Newtonian heating and non‐uniform temperature\",\"authors\":\"Muhammad Arif, Poom Kumam, Wiboonsak Watthayu\",\"doi\":\"10.1002/zamm.202300048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Caputo operator has recently gained popularity as a widely used operator in fractional calculus. The purpose of this current research is to develop a new operator by combining the Caputo and proportional derivatives, resulting in the constant proportional Caputo (CPC) fractional operator. To demonstrate the dynamic behavior of this newly defined operator, it was applied to the unsteady Oldroyd‐B fluid model. Additionally, the research considered an Oldroyd‐B fluid in a generalized Darcy medium, considering non‐uniform temperature, radiation, and heat generation. Analytical solutions for the proposed model were obtained and presented in graphical form using the computational software MATHCAD. The impact of various physical parameters was also examined through graphical analysis of velocity and temperature profiles, as well as a comparison between isothermal and non‐uniform temperature. In conclusion, this research found that the CPC fractional operator effectively explains the dynamics of the Oldroyd‐B fluid model with stable and strong memory effects, compared to the classical model.\",\"PeriodicalId\":23924,\"journal\":{\"name\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300048\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis of constant proportional Caputo operator on the unsteady Oldroyd‐B fluid flow with Newtonian heating and non‐uniform temperature
Abstract The Caputo operator has recently gained popularity as a widely used operator in fractional calculus. The purpose of this current research is to develop a new operator by combining the Caputo and proportional derivatives, resulting in the constant proportional Caputo (CPC) fractional operator. To demonstrate the dynamic behavior of this newly defined operator, it was applied to the unsteady Oldroyd‐B fluid model. Additionally, the research considered an Oldroyd‐B fluid in a generalized Darcy medium, considering non‐uniform temperature, radiation, and heat generation. Analytical solutions for the proposed model were obtained and presented in graphical form using the computational software MATHCAD. The impact of various physical parameters was also examined through graphical analysis of velocity and temperature profiles, as well as a comparison between isothermal and non‐uniform temperature. In conclusion, this research found that the CPC fractional operator effectively explains the dynamics of the Oldroyd‐B fluid model with stable and strong memory effects, compared to the classical model.
期刊介绍:
ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.