Yao Bai, Peng Sun, Haoyu Dou, Tiancheng Ma, Yujing Wang, Pengqian Liu
{"title":"含双缺陷巴西盘力学性能及裂纹演化机理的实验与颗粒流模拟","authors":"Yao Bai, Peng Sun, Haoyu Dou, Tiancheng Ma, Yujing Wang, Pengqian Liu","doi":"10.1093/jge/gxad080","DOIUrl":null,"url":null,"abstract":"Abstract The mechanical behavior of fractured rock in tensile stress environment is a hot topic in underground mining engineering. Here, real surrounding rock of coal mine roadway was simulated by using rock-like materials and the tensile failure behavior of Brazilian discs with intermittent double fissures was investigated experimentally. The deformation response, fracture evolution, and failure mode of rock were analyzed. The fissured disc specimen's discrete element model was proposed in particle flow code (PFC2D). The microforce field, crack, and energy evolution processes of model specimens were discussed. The results showed that the load-displacement curves exhibit single-peak and double-peak types, corresponding to the splitting penetration and wing crack penetration damage modes of the specimen. The fissure angle or rock bridge angle showed a great influence on the evolution of main cracks and secondary cracks. The double-fissured Brazilian disc failed due to the initiation and transfer of microcracks in the stress concentration zone, combined with the continuous propagation and convergence of those microcracks. The splitting failure of the Brazilian disc is a continuous process of strain energy accumulation from the early stage of loading and instantaneous release of strain energy after obtaining the peak strength as the dissipative energy sharply rises.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment and particle flow simulation on mechanical properties and crack evolution mechanism of Brazilian discs containing two flaws\",\"authors\":\"Yao Bai, Peng Sun, Haoyu Dou, Tiancheng Ma, Yujing Wang, Pengqian Liu\",\"doi\":\"10.1093/jge/gxad080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The mechanical behavior of fractured rock in tensile stress environment is a hot topic in underground mining engineering. Here, real surrounding rock of coal mine roadway was simulated by using rock-like materials and the tensile failure behavior of Brazilian discs with intermittent double fissures was investigated experimentally. The deformation response, fracture evolution, and failure mode of rock were analyzed. The fissured disc specimen's discrete element model was proposed in particle flow code (PFC2D). The microforce field, crack, and energy evolution processes of model specimens were discussed. The results showed that the load-displacement curves exhibit single-peak and double-peak types, corresponding to the splitting penetration and wing crack penetration damage modes of the specimen. The fissure angle or rock bridge angle showed a great influence on the evolution of main cracks and secondary cracks. The double-fissured Brazilian disc failed due to the initiation and transfer of microcracks in the stress concentration zone, combined with the continuous propagation and convergence of those microcracks. The splitting failure of the Brazilian disc is a continuous process of strain energy accumulation from the early stage of loading and instantaneous release of strain energy after obtaining the peak strength as the dissipative energy sharply rises.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad080\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jge/gxad080","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Experiment and particle flow simulation on mechanical properties and crack evolution mechanism of Brazilian discs containing two flaws
Abstract The mechanical behavior of fractured rock in tensile stress environment is a hot topic in underground mining engineering. Here, real surrounding rock of coal mine roadway was simulated by using rock-like materials and the tensile failure behavior of Brazilian discs with intermittent double fissures was investigated experimentally. The deformation response, fracture evolution, and failure mode of rock were analyzed. The fissured disc specimen's discrete element model was proposed in particle flow code (PFC2D). The microforce field, crack, and energy evolution processes of model specimens were discussed. The results showed that the load-displacement curves exhibit single-peak and double-peak types, corresponding to the splitting penetration and wing crack penetration damage modes of the specimen. The fissure angle or rock bridge angle showed a great influence on the evolution of main cracks and secondary cracks. The double-fissured Brazilian disc failed due to the initiation and transfer of microcracks in the stress concentration zone, combined with the continuous propagation and convergence of those microcracks. The splitting failure of the Brazilian disc is a continuous process of strain energy accumulation from the early stage of loading and instantaneous release of strain energy after obtaining the peak strength as the dissipative energy sharply rises.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.