半代数集的持久同调

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Saugata Basu, Negin Karisani
{"title":"半代数集的持久同调","authors":"Saugata Basu, Negin Karisani","doi":"10.1137/22m1494415","DOIUrl":null,"url":null,"abstract":"We give an algorithm with singly exponential complexity for computing the barcodes up to dimension (for any fixed ) of the filtration of a given semialgebraic set by the sublevel sets of a given polynomial. Our algorithm is the first algorithm for this problem with singly exponential complexity and generalizes the corresponding results for computing the Betti numbers up to dimension of semialgebraic sets with no filtration present.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":"26 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Persistent Homology of Semialgebraic Sets\",\"authors\":\"Saugata Basu, Negin Karisani\",\"doi\":\"10.1137/22m1494415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an algorithm with singly exponential complexity for computing the barcodes up to dimension (for any fixed ) of the filtration of a given semialgebraic set by the sublevel sets of a given polynomial. Our algorithm is the first algorithm for this problem with singly exponential complexity and generalizes the corresponding results for computing the Betti numbers up to dimension of semialgebraic sets with no filtration present.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1494415\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1494415","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

本文给出了一种单指数复杂度的算法,用于计算给定多项式的子水平集对给定半代数集的过滤达到(任意固定)维的条形码。我们的算法是第一个解决单指数复杂性问题的算法,并推广了计算无过滤半代数集到维数的Betti数的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistent Homology of Semialgebraic Sets
We give an algorithm with singly exponential complexity for computing the barcodes up to dimension (for any fixed ) of the filtration of a given semialgebraic set by the sublevel sets of a given polynomial. Our algorithm is the first algorithm for this problem with singly exponential complexity and generalizes the corresponding results for computing the Betti numbers up to dimension of semialgebraic sets with no filtration present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信