Na Sun, Hongyan Yu, Andrei S. Potapov, Yaguang Sun
{"title":"利用金属有机骨架分离丙烯和丙烷","authors":"Na Sun, Hongyan Yu, Andrei S. Potapov, Yaguang Sun","doi":"10.1080/02603594.2023.2261103","DOIUrl":null,"url":null,"abstract":"ABSTRACTPropylene (C3H6) is a crucial olefin raw material used in the production of polypropylene, which is the world’s second-most produced synthetic plastic. Separating propylene from propane (C3H8) is an important and significant challenge for industry due to the similar molecular sizes and physical properties of these gases. At present, the usual method for this separation is energy-intensive cryogenic distillation, which has low efficiency and high energy consumption. Therefore, an energy-efficient alternative way is in an urgent demand. Metal-organic frameworks (MOFs) are promising candidates for propylene/propane separation, thanks to the well-defined, designable, modifiable, and flexible structures. This review provides a summary of a recent development of MOFs that are able to discriminate between propylene and propane. The key factors that determine the separation performance of MOFs, primarily from the perspectives of pore size, presence of open metal sites (OMS) and MOFs membranes are summarized. Besides, the challenges that must be addressed for the further development of separations utilizing MOFs are also discussed.KEYWORDS: Metal-organic frameworksseparationadsorptionpore sizeopen metal sites Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by “The Belt and Road” Innovative Talent Exchange Foreign Experts Project (DL2022006007L), the Scientific Research Project of the Educational Department of Liaoning Province (LJ2019011), the National Natural Science Foundation of China (22301191, 21671139), the China postdoctoral Science Foundation (2023M731798). A.S.P. acknowledges the Ministry of Science and Higher Education of the Russian Federation (121031700321-3).","PeriodicalId":10481,"journal":{"name":"Comments on Inorganic Chemistry","volume":"33 1","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of Propylene and Propane Using Metal–Organic Frameworks\",\"authors\":\"Na Sun, Hongyan Yu, Andrei S. Potapov, Yaguang Sun\",\"doi\":\"10.1080/02603594.2023.2261103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTPropylene (C3H6) is a crucial olefin raw material used in the production of polypropylene, which is the world’s second-most produced synthetic plastic. Separating propylene from propane (C3H8) is an important and significant challenge for industry due to the similar molecular sizes and physical properties of these gases. At present, the usual method for this separation is energy-intensive cryogenic distillation, which has low efficiency and high energy consumption. Therefore, an energy-efficient alternative way is in an urgent demand. Metal-organic frameworks (MOFs) are promising candidates for propylene/propane separation, thanks to the well-defined, designable, modifiable, and flexible structures. This review provides a summary of a recent development of MOFs that are able to discriminate between propylene and propane. The key factors that determine the separation performance of MOFs, primarily from the perspectives of pore size, presence of open metal sites (OMS) and MOFs membranes are summarized. Besides, the challenges that must be addressed for the further development of separations utilizing MOFs are also discussed.KEYWORDS: Metal-organic frameworksseparationadsorptionpore sizeopen metal sites Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by “The Belt and Road” Innovative Talent Exchange Foreign Experts Project (DL2022006007L), the Scientific Research Project of the Educational Department of Liaoning Province (LJ2019011), the National Natural Science Foundation of China (22301191, 21671139), the China postdoctoral Science Foundation (2023M731798). A.S.P. acknowledges the Ministry of Science and Higher Education of the Russian Federation (121031700321-3).\",\"PeriodicalId\":10481,\"journal\":{\"name\":\"Comments on Inorganic Chemistry\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comments on Inorganic Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02603594.2023.2261103\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comments on Inorganic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02603594.2023.2261103","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Separation of Propylene and Propane Using Metal–Organic Frameworks
ABSTRACTPropylene (C3H6) is a crucial olefin raw material used in the production of polypropylene, which is the world’s second-most produced synthetic plastic. Separating propylene from propane (C3H8) is an important and significant challenge for industry due to the similar molecular sizes and physical properties of these gases. At present, the usual method for this separation is energy-intensive cryogenic distillation, which has low efficiency and high energy consumption. Therefore, an energy-efficient alternative way is in an urgent demand. Metal-organic frameworks (MOFs) are promising candidates for propylene/propane separation, thanks to the well-defined, designable, modifiable, and flexible structures. This review provides a summary of a recent development of MOFs that are able to discriminate between propylene and propane. The key factors that determine the separation performance of MOFs, primarily from the perspectives of pore size, presence of open metal sites (OMS) and MOFs membranes are summarized. Besides, the challenges that must be addressed for the further development of separations utilizing MOFs are also discussed.KEYWORDS: Metal-organic frameworksseparationadsorptionpore sizeopen metal sites Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by “The Belt and Road” Innovative Talent Exchange Foreign Experts Project (DL2022006007L), the Scientific Research Project of the Educational Department of Liaoning Province (LJ2019011), the National Natural Science Foundation of China (22301191, 21671139), the China postdoctoral Science Foundation (2023M731798). A.S.P. acknowledges the Ministry of Science and Higher Education of the Russian Federation (121031700321-3).
期刊介绍:
Comments on Inorganic Chemistry is intended as a vehicle for authoritatively written critical discussions of inorganic chemistry research. We publish focused articles of any length that critique or comment upon new concepts, or which introduce new interpretations or developments of long-standing concepts. “Comments” may contain critical discussions of previously published work, or original research that critiques existing concepts or introduces novel concepts.
Through the medium of “comments,” the Editors encourage authors in any area of inorganic chemistry - synthesis, structure, spectroscopy, kinetics and mechanisms, theory - to write about their interests in a manner that is both personal and pedagogical. Comments is an excellent platform for younger inorganic chemists whose research is not yet widely known to describe their work, and add to the spectrum of Comments’ author profiles, which includes many well-established inorganic chemists.