{"title":"生物氢气途径与沼气途径转化糖蜜为生物乙醇的工程比较及成本评估:泰国案例","authors":"Kuntima Krekkeitsakul, Rujira Jitrwung, Teerasak Hudakorn, Sophon Sirisattha, Weerawat Patthaveekongka","doi":"10.1080/14786451.2023.2208691","DOIUrl":null,"url":null,"abstract":"Biomethanol is a significant chemical in biochemicals and biofuels. Molasses is interested in producing biogas and biohydrogen for biomethanol. Biohydrogen, Enterobacter aerogenes digested molasses obtaining value organic chemicals and biohydrogen in appropriate ratios of H2/CO2 then transforming to H2/CO by RWGS. Biogas was converted to syngas then methanol synthesis. The biogas pathway was 4 steps and it was appropriate for sailing single product as biomethanol. The biohydrogen pathway was 3 steps and obtained income both valuable substances and biomethanol. Operating expenditure for 1 kg methanol by biohydrogen experiment and theory were 4.4148 and 4.0912 USD comparing with biogas 0.3446 USD based on commercial methanol price 0.449 USD/kg. The sale prices per kg of biomethanol by biohydrogen were 6.7243 USD (Exp.) and 5.7500 USD (Theory) comparing with biomethanol sailing from biogas pathway at 0.4486 USD. Margin caps were 30.19%, 39.66%, and 40.55% for biogas pathway, biohydrogen experiment and theory route respectively.","PeriodicalId":14406,"journal":{"name":"International Journal of Sustainable Energy","volume":"9 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of molasses conversion to biomethanol by biohydrogen pathway with biogas route in engineering and cost assessment: Thailand case\",\"authors\":\"Kuntima Krekkeitsakul, Rujira Jitrwung, Teerasak Hudakorn, Sophon Sirisattha, Weerawat Patthaveekongka\",\"doi\":\"10.1080/14786451.2023.2208691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomethanol is a significant chemical in biochemicals and biofuels. Molasses is interested in producing biogas and biohydrogen for biomethanol. Biohydrogen, Enterobacter aerogenes digested molasses obtaining value organic chemicals and biohydrogen in appropriate ratios of H2/CO2 then transforming to H2/CO by RWGS. Biogas was converted to syngas then methanol synthesis. The biogas pathway was 4 steps and it was appropriate for sailing single product as biomethanol. The biohydrogen pathway was 3 steps and obtained income both valuable substances and biomethanol. Operating expenditure for 1 kg methanol by biohydrogen experiment and theory were 4.4148 and 4.0912 USD comparing with biogas 0.3446 USD based on commercial methanol price 0.449 USD/kg. The sale prices per kg of biomethanol by biohydrogen were 6.7243 USD (Exp.) and 5.7500 USD (Theory) comparing with biomethanol sailing from biogas pathway at 0.4486 USD. Margin caps were 30.19%, 39.66%, and 40.55% for biogas pathway, biohydrogen experiment and theory route respectively.\",\"PeriodicalId\":14406,\"journal\":{\"name\":\"International Journal of Sustainable Energy\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14786451.2023.2208691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14786451.2023.2208691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Comparison of molasses conversion to biomethanol by biohydrogen pathway with biogas route in engineering and cost assessment: Thailand case
Biomethanol is a significant chemical in biochemicals and biofuels. Molasses is interested in producing biogas and biohydrogen for biomethanol. Biohydrogen, Enterobacter aerogenes digested molasses obtaining value organic chemicals and biohydrogen in appropriate ratios of H2/CO2 then transforming to H2/CO by RWGS. Biogas was converted to syngas then methanol synthesis. The biogas pathway was 4 steps and it was appropriate for sailing single product as biomethanol. The biohydrogen pathway was 3 steps and obtained income both valuable substances and biomethanol. Operating expenditure for 1 kg methanol by biohydrogen experiment and theory were 4.4148 and 4.0912 USD comparing with biogas 0.3446 USD based on commercial methanol price 0.449 USD/kg. The sale prices per kg of biomethanol by biohydrogen were 6.7243 USD (Exp.) and 5.7500 USD (Theory) comparing with biomethanol sailing from biogas pathway at 0.4486 USD. Margin caps were 30.19%, 39.66%, and 40.55% for biogas pathway, biohydrogen experiment and theory route respectively.
期刊介绍:
Engineering and sustainable development are intrinsically linked. All capital plant and every consumable product depends on an engineering input through design, manufacture and operation, if not for the product itself then for the equipment required to process and transport the raw materials and the final product. Many aspects of sustainable development depend directly on appropriate and timely actions by engineers. Engineering is an extended process of analysis, synthesis, evaluation and execution and, therefore, it is argued that engineers must be involved from the outset of any proposal to develop sustainable solutions. Engineering embraces many disciplines and truly sustainable solutions are usually inter-disciplinary in nature.