Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Tingjun Hou, Mingli Song
{"title":"逆合成深度学习的最新进展","authors":"Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Tingjun Hou, Mingli Song","doi":"10.1002/wcms.1694","DOIUrl":null,"url":null,"abstract":"<p>Retrosynthesis is the cornerstone of organic chemistry, providing chemists in material and drug manufacturing access to poorly available and brand-new molecules. Conventional rule-based or expert-based computer-aided synthesis has obvious limitations, such as high labor costs and limited search space. In recent years, dramatic breakthroughs driven by deep learning have revolutionized retrosynthesis. Here we aim to present a comprehensive review of recent advances in AI-based retrosynthesis. For single-step and multi-step retrosynthesis both, we first introduce their goal and provide a thorough taxonomy of existing methods. Afterwards, we analyze these methods in terms of their mechanism and performance, and introduce popular evaluation metrics for them, in which we also provide a detailed comparison among representative methods on several public datasets. In the next part, we introduce popular databases and established platforms for retrosynthesis. Finally, this review concludes with a discussion about promising research directions in this field.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in deep learning for retrosynthesis\",\"authors\":\"Zipeng Zhong, Jie Song, Zunlei Feng, Tiantao Liu, Lingxiang Jia, Shaolun Yao, Tingjun Hou, Mingli Song\",\"doi\":\"10.1002/wcms.1694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Retrosynthesis is the cornerstone of organic chemistry, providing chemists in material and drug manufacturing access to poorly available and brand-new molecules. Conventional rule-based or expert-based computer-aided synthesis has obvious limitations, such as high labor costs and limited search space. In recent years, dramatic breakthroughs driven by deep learning have revolutionized retrosynthesis. Here we aim to present a comprehensive review of recent advances in AI-based retrosynthesis. For single-step and multi-step retrosynthesis both, we first introduce their goal and provide a thorough taxonomy of existing methods. Afterwards, we analyze these methods in terms of their mechanism and performance, and introduce popular evaluation metrics for them, in which we also provide a detailed comparison among representative methods on several public datasets. In the next part, we introduce popular databases and established platforms for retrosynthesis. Finally, this review concludes with a discussion about promising research directions in this field.</p><p>This article is categorized under:\\n </p>\",\"PeriodicalId\":236,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Computational Molecular Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1694\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1694","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent advances in deep learning for retrosynthesis
Retrosynthesis is the cornerstone of organic chemistry, providing chemists in material and drug manufacturing access to poorly available and brand-new molecules. Conventional rule-based or expert-based computer-aided synthesis has obvious limitations, such as high labor costs and limited search space. In recent years, dramatic breakthroughs driven by deep learning have revolutionized retrosynthesis. Here we aim to present a comprehensive review of recent advances in AI-based retrosynthesis. For single-step and multi-step retrosynthesis both, we first introduce their goal and provide a thorough taxonomy of existing methods. Afterwards, we analyze these methods in terms of their mechanism and performance, and introduce popular evaluation metrics for them, in which we also provide a detailed comparison among representative methods on several public datasets. In the next part, we introduce popular databases and established platforms for retrosynthesis. Finally, this review concludes with a discussion about promising research directions in this field.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.